Math, asked by rajvithapa, 17 days ago

The sum of two oppsité number is​

Answers

Answered by ITXNOBITA
5

\large\underline{\sf{Solution-}}

Cosider,

\rm \:  7 \cdot \sin \bigg(5 \cdot x - \dfrac{\pi}{2} \bigg ) + \cos \bigg( 3 \cdot x + \dfrac{\pi}{2} \bigg)

We know,

\boxed{\tt{ sin( - x) =  - sinx \: }} \\

So, using this result, the above expression can be rewritten as

\rm \: =  \:   -  7 \sin \bigg(\dfrac{\pi}{2} - 5x \bigg ) + \cos \bigg(\dfrac{\pi}{2} + 3x \bigg)

\rm \:  =  \:  - 7cos5x - sin3x

So,

\rm \: \dfrac{\partial}{\partial x} \bigg[7 \cdot \sin \bigg(5 \cdot x - \dfrac{\pi}{2} \bigg ) + \cos \bigg( 3 \cdot x + \dfrac{\pi}{2} \bigg) \bigg ]

can be rewritten as

\rm \:  =  \: \dfrac{\partial}{\partial x}\bigg( - 7cos5x - sin3x\bigg)

\rm \:  =  \:  - 7\dfrac{\partial}{\partial x}cos5x - \dfrac{\partial}{\partial x}sin3x

We know,

\boxed{\tt{ \dfrac{d}{dx}sinx \:  =  \: cosx \: }} \\

and

\boxed{\tt{ \dfrac{d}{dx}cosx \:  =  \:  -  \: sinx \: }} \\

So, using these results, we get

\rm \:  =  \:  - 7 \: ( - sin5x)\dfrac{d}{dx}5x - cos3x\dfrac{\partial}{\partial x}3x

\rm \:  =  \: 7sin5x \times 5 - cos3x \times 3

\rm \:  =  \: 35sin5x - 3cos3x

Hence,

\rm \: \dfrac{\partial}{\partial x} \bigg[7 \cdot \sin \bigg(5 \cdot x - \dfrac{\pi}{2} \bigg ) + \cos \bigg( 3 \cdot x + \dfrac{\pi}{2} \bigg) \bigg ]_{x = 2\pi}

\rm \:  =  \: 35sin10\pi \:  -  \: 3cos6\pi

We know,

\boxed{\tt{ sin \: n\pi = 0 \:  \:  \: where \: n \: is \: integer}} \\

and

\boxed{\tt{ cos \: n\pi =  {( - 1)}^{n} \:  \:  \: where \: n \: is \: integer}} \\

So, using these results, we get

\rm \:  =  \: 0 - 3 {( - 1)}^{6}

\rm \:  =  \:  - 3  \times 1

\rm \:  =  \:  - 3

Hence,

\boxed{\tt{ \rm \: \dfrac{\partial}{\partial x} \bigg[7 \cdot \sin \bigg(5 \cdot x - \dfrac{\pi}{2} \bigg ) + \cos \bigg( 3 \cdot x + \dfrac{\pi}{2} \bigg) \bigg ]_{x = 2\pi} =  - 3}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by llAestheticKingll91
6

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Cosider,

\rm \: 7 \cdot \sin \bigg(5 \cdot x - \dfrac{\pi}{2} \bigg ) + \cos \bigg( 3 \cdot x + \dfrac{\pi}{2} \bigg)7

We know,

\begin{gathered}\boxed{\tt{ sin( - x) = - sinx \: }} \\ \end{gathered}

So, using this result, the above expression can be rewritten as

\rm \: = \: - 7 \sin \bigg(\dfrac{\pi}{2} - 5x \bigg ) + \cos \bigg(\dfrac{\pi}{2} + 3x \bigg)=−7sin

\rm \: = \: - 7cos5x - sin3x=−7cos5x−sin3x

So,

\rm \: \dfrac{\partial}{\partial x} \bigg[7 \cdot \sin \bigg(5 \cdot x - \dfrac{\pi}{2} \bigg ) + \cos \bigg( 3 \cdot x + \dfrac{\pi}{2} \bigg) \bigg ]

can be rewritten as

\rm \: = \: \dfrac{\partial}{\partial x}\bigg( - 7cos5x - sin3x\bigg)=

(−7cos5x−sin3x)

\rm \: = \: - 7\dfrac{\partial}{\partial x}cos5x - \dfrac{\partial}{\partial x}sin3x=−7

We know,

\begin{gathered}\boxed{\tt{ \dfrac{d}{dx}sinx \: = \: cosx \: }} \\ \end{gathered}

\begin{gathered}\boxed{\tt{ \dfrac{d}{dx}cosx \: = \: - \: sinx \: }} \\ \end{gathered}

So, using these results, we get

\rm \: = \: - 7 \: ( - sin5x)\dfrac{d}{dx}5x - cos3x\dfrac{\partial}{\partial x}3x=−7(−sin5x)

\rm \: = \: 7sin5x \times 5 - cos3x \times 3=7sin5x×5−cos3x×3

\rm \: = \: 35sin5x - 3cos3x=35sin5x−3cos3x

Hence,

\rm \: \dfrac{\partial}{\partial x} \bigg[7 \cdot \sin \bigg(5 \cdot x - \dfrac{\pi}{2} \bigg ) + \cos \bigg( 3 \cdot x + \dfrac{\pi}{2} \bigg) \bigg ]_{x = 2\pi}

\rm \: = \: 35sin10\pi \: - \: 3cos6\pi=35sin10π−3cos6π

We know,

\begin{gathered}\boxed{\tt{ sin \: n\pi = 0 \: \: \: where \: n \: is \: integer}} \\ \end{gathered}

\begin{gathered}\boxed{\tt{ cos \: n\pi = {( - 1)}^{n} \: \: \: where \: n \: is \: integer}} \\ \end{gathered}

So, using these results, we get

\rm \: = \: 0 - 3 {( - 1)}^{6}=0−3(−1)

\rm \: = \: - 3 \times 1=−3×1

\rm \: = \: - 3=−3

Hence,

\begin{gathered}\boxed{\tt{ \rm \: \dfrac{\partial}{\partial x} \bigg[7 \cdot \sin \bigg(5 \cdot x - \dfrac{\pi}{2} \bigg ) + \cos \bigg( 3 \cdot x + \dfrac{\pi}{2} \bigg) \bigg ]_{x = 2\pi} = - 3}} \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf - \: sinx \\ \\ \sf tanx & \sf {sec}^{2}x \\ \\ \sf cotx & \sf - {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf - \: cosecx \: cotx\\ \\ \sf \sqrt{x} & \sf \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf {e}^{x} & \sf {e}^{x} \end{array}} \\ \end{gathered}\end{gathered}

Similar questions