Math, asked by brarb5470, 5 months ago

the sum of two rational numbers-23/9.if one of the members is 5/9.​

Answers

Answered by MsMaya
0

Answer:

Let the other number be x.

x + 5/9 = -23/9

x = -23/9 - 5/9

x = -28/9

Hence the other number is -28/9.

Answered by BrainlyRish
2

❍ Let's Consider second rational number be x .

Given that ,

  • The sum of two rational numbers-23/9.if one of the members is 5/9.

Then ,

  • \star\sf{ Equation = \dfrac{5}{9} + x = \dfrac{-23}{9}}\\

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Solving\:for\:x \:in\: the \: Formed \: Equation \::}}\\

\qquad:\implies\sf{ Equation = \dfrac{5}{9} + x = \dfrac{-23}{9}}\\

\qquad:\implies\sf{  \dfrac{5}{9} + x = \dfrac{-23}{9}}\\

\qquad:\implies\sf{  x = \dfrac{-23}{9}-\dfrac{5}{9}}\\

\qquad:\implies\sf{  x = \dfrac{-23-5}{9}}\\

\qquad:\implies\sf{  x = \dfrac{-28}{9}}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = \dfrac{-28}{9}\: }}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Hence,\:The\:Second \:Rational \:number \:is\:\bf{\dfrac{-28}{9}\: }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

V E R I F I C A T I O N :

As, We know that ,

  • \star\sf{ Equation = \dfrac{5}{9} + x = \dfrac{-23}{9}}\\

Where,

  • \qquad:\implies\sf{  x = \dfrac{-28}{9}}\\

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \:\:x \:in\: the \: Formed \: Equation \::}}\\

\qquad:\implies\sf{ Equation = \dfrac{5}{9} + \dfrac{-28}{9} = \dfrac{-23}{9}}\\

\qquad:\implies\sf{  \dfrac{5}{9} + \dfrac{-28}{9} = \dfrac{-23}{9}}\\

\qquad:\implies\sf{  \dfrac{5+ (-28)}{9}  = \dfrac{-23}{9}}\\

\qquad:\implies\sf{  \dfrac{5 -28}{9}  = \dfrac{-23}{9}}\\

\qquad:\implies\sf{  \dfrac{-23}{9}  = \dfrac{-23}{9}}\\

⠀⠀⠀⠀⠀\therefore {\underline {\bf{ Hence, \:Verified \:}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions