Math, asked by kumaraman37339, 1 month ago

The sum of two rational numbers is -5/11. If one of the number is -3/22, find the other.​

Answers

Answered by Anonymous
45

Answer:

Given :-

  • The sum of two rational number is - 5/11.
  • One of the number is - 3/22.

To Find :-

  • What is the other rational number.

Solution :-

Let,

Other rational number = x

Given :

  • The sum of two numbers = - 5/11
  • One of the number = - 3/22

According to the question,

\implies \sf x + \bigg\{\dfrac{- 3}{22}\bigg\} =\: \dfrac{- 5}{11}

\implies \sf x - \dfrac{3}{22} =\: \dfrac{- 5}{11}

\implies \sf x =\: \dfrac{- 5}{11} + \dfrac{3}{22}

\implies \sf x =\: \dfrac{- 10 + 3}{22}

\implies \sf x =\: \dfrac{- 7}{22}

\sf\bold{\underline{\therefore\: The\: other\: rational\: number\: is\: \dfrac{- 7}{22}\: .}}

__________________________________

VERIFICATION :-

\leadsto \sf x + \bigg\{\dfrac{- 3}{22}\bigg\} =\: \dfrac{- 5}{11}

By putting x = - 7/22 we get,

\leadsto \sf \dfrac{- 7}{22} + \bigg\{\dfrac{- 3}{22}\bigg\} =\: \dfrac{- 5}{11}

\leadsto \sf \dfrac{- 7}{22} - \dfrac{3}{22} =\: \dfrac{- 5}{11}

\leadsto \sf \dfrac{- 7 - 3}{22} =\: \dfrac{- 10}{22}

\leadsto \sf \dfrac{- \cancel{10}}{\cancel{22}} =\: \dfrac{- 5}{11}

\leadsto \sf\bold{\purple{\dfrac{- 5}{11} =\: \dfrac{- 5}{11}}}

Hence Verified !

Answered by MathCracker
11

Question :-

The sum of two rational numbers is  \frac{ - 5}{11}  \\ . If one of the number is  \frac{ - 3}{22}  \\ , find the other.

Answer :-

  • The other rational number is -7/22

Step by step explanation :-

The sum of two rational number is -5/11, let's assume that the other rational number be x.

\rm:\longmapsto{x +  \bigg( \frac{ - 3}{22} \bigg) =  \frac{ - 5}{11}  } \\

On opening bracket,

\rm:\longmapsto{x -  \frac{3}{22}  =  \frac{ - 5}{22} } \\

Taking  -  \frac{3}{22}  \\ on RHS,

\rm:\longmapsto{x =  \frac{ - 5}{11}  +  \frac{3}{22}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \\  \\ \rm:\longmapsto{ x =  \frac{( - 5 \times 22) + (11 \times 3)}{11 \times 22} } \\  \\ \rm:\longmapsto{  x = \frac{ - 110 + 33 }{242} } \: \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \rm: \longmapsto{x =  \frac{ - 77}{242} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{x =  \frac{ - 7}{22} } \:  \:  \:  \: (by \: dividing \: 11)

Verification :-

\rm:\longmapsto{x +  \bigg( \frac{ - 3}{22} \bigg) =  \frac{ - 5}{11}  } \\  \\ \rm:\longmapsto{ \frac{ - 7}{22}  -  \frac{ 3  }{22} =  \frac{ - 5}{11}  } \:  \:  \\  \\ \rm:\longmapsto{ \frac{ - 7 - 3}{22} =  \frac{ - 5}{11}  } \:  \:  \:  \:   \:  \\  \\ \rm:\longmapsto{ \frac{ - 10}{22} } =  \frac{ - 5}{11}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{ \frac{ - 5}{11} =  \frac{ - 5}{11}  } \:  \:  \:  \:  \:  \:  \:  \:  \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions