The sum of two rational numbers is -6. If one of them is
then find the other.
Answers
Answer:
u did not give the correct question
Step-by-step explanation:
see ur question before posting it anyhow answer is -3
Solution:-
Method :- 1
Factorization method
\rm : \implies {x}^{2} - 4x + 3 = 0:⟹x
2
−4x+3=0
Splitting into middle term
\rm : \implies {x}^{2} - 3x - x + 3 = 0:⟹x
2
−3x−x+3=0
\rm : \implies x(x - 3) - (x - 3) = 0:⟹x(x−3)−(x−3)=0
\rm : \implies (x - 3)(x - 1) = 0:⟹(x−3)(x−1)=0
\rm : \implies x = 3 \: \: and \: \: x \: = 1:⟹x=3andx=1
Method :- 2
Quadratic formula method
\boxed{ \rm \: x = \dfrac{ - b \pm \sqrt{D} }{2a} }
x=
2a
−b±
D
given equation :-
\rm : \implies {x}^{2} - 4x + 3:⟹x
2
−4x+3
Now compare with
\rm : \implies {a}^{2} + bx + c = 0:⟹a
2
+bx+c=0
So
\rm : \implies a = 1 \: \: b \: = - 4 \: and \: c \: = 3:⟹a=1b=−4andc=3
Find the Discriminant
\rm : \implies D = {b }^{2} - 4ac:⟹D=b
2
−4ac
Now we get
\rm : \implies D = ( - 4) {}^{2} - 4 \times 3 \times 1:⟹D=(−4)
2
−4×3×1
\rm : \implies D = 16 - 12:⟹D=16−12
\rm : \implies D = 4:⟹D=4
Now use quadratic formula
\boxed{ \rm \: x = \dfrac{ - b \pm \sqrt{D} }{2a} }
x=
2a
−b±
D
\rm : \implies x = \dfrac{ - ( - 4) \pm \sqrt{4} }{2 \times 1}:⟹x=
2×1
−(−4)±
4
\rm : \implies x = \dfrac{4 \pm2}{2}:⟹x=
2
4±2
\rm : \implies x = \dfrac{4 + 2}{2} \: and \: x = \dfrac{4 - 2}{2}:⟹x=
2
4+2
andx=
2
4−2
\rm : \implies x = 3 \: \: \: and \: \: x = 1:⟹x=3andx=1