Math, asked by gboy53453, 4 hours ago

the sum of two rational numbers is 73/63. if one rational number is 5/7, find the other rational number.​

Answers

Answered by BrainlySparrow
197

\red{\mid{\fbox{\tt{Question:}}\mid}}

✠ The sum of two rational numbers is 73/63. if one rational number is 5/7, find the other rational number.

\red{\mid{\fbox{\tt{Solution:}}\mid}}

Let the other number be x.

 \displaystyle{ \implies \: \frac{5}{7} + x =  \frac{73}{63}   }

 \displaystyle{ \implies \: x =  \frac{73}{63} -  \frac{5}{7}  }

❖ Taking LCM as 63.

 \displaystyle{ \frac{5 \times 9}{7 \times 9}  =  \frac{45}{63} }

 \displaystyle{ \implies \: x =  \frac{73 - 45}{63} }

 \displaystyle{ \implies \: x =  \frac{28}{63} }

∴ The other fraction is 28/63.

\red{\mid{\fbox{\tt{More \:  to \:  know: \: }}\mid}} \:

\bf{\dag}\:\:\underline{\textsf{Fraction Rules :}}\\\\\bigstar\:\:\sf\dfrac{A}{C} + \dfrac{B}{C} = \dfrac{A+B}{C} \\\\\bigstar\:\:\sf{\dfrac{A}{C} - \dfrac{B}{C} = \dfrac{A-B}{C}}\\\\\bigstar\:\:\sf\dfrac{A}{B} \times \dfrac{C}{D} = \dfrac{AC}{BD}\\\\\bigstar\:\:\sf\dfrac{A}{B} + \dfrac{C}{D} = \dfrac{AD}{BD} + \dfrac{BC}{BD} = \dfrac{AD+BC}{BD} \\\\\bigstar\:\:\sf\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{AD}{BD} - \dfrac{BC}{BD} = \dfrac{AD-BC}{BD}\\\\\bigstar \:\:\sf \dfrac{A}{B} \div \dfrac{C}{D} = \dfrac{A}{B} \times \dfrac{D}{C} = \dfrac{AD}{BC}

Similar questions