Math, asked by tanishp726, 4 months ago

The sum of two rational numbers is ⅖. If one of them is -4/7 find the other.​

Answers

Answered by TheWonderWall
20

\large\sf\underline{Given}

  • Sum of two rational numbers =\sf\:\frac{2}{5}

  • One of the number = \sf\:\frac{-4}{7}

\large\sf\underline{To\:find}

  • The other number .

\large\sf\underline{Solution}

Let's assume the required number be x .

So according to the question ,

\sf➛\:x+(\frac{-4}{7})=\frac{2}{5}

\sf➛\:x-\frac{4}{7}=\frac{2}{5}

\sf➛\:\frac{7x-4}{7}=\frac{2}{5}

\sf➛\:5(7x-4)=2 \times 7

\sf➛\:35x-20=14

\sf➛\:35x=14+20

\sf➛\:35x=34

\small{\underline{\boxed{\mathrm\pink{➻\:x=\frac{34}{35}}}}}

‎ ‎‎‎‎‎‎⠀⠀━━━━━━━━▲━━━━━━━━

\large\sf\underline{Verification\:of\:my\:answer\::}

\sf➛\:\frac{34}{35}+(\frac{-4}{7})

\sf➛\:\frac{34}{35}-\frac{4}{7}

\sf➛\:\frac{34-20}{35}

\sf➛\:\frac{14}{35}

\small{\underline{\boxed{\mathrm\pink{➻\:\frac{2}{5}}}}}

Therefore verified .

‎ ‎‎‎‎‎‎⠀⠀ ━━━━━━━━▼━━━━━━━━

Happy solving ¡!

Answered by MrHyper
128

\huge\rm\purple{an{\mathfrak{S}}wεr:}

{}

\bf{{\underline{Given}}:}

  • \sf{Sum~of~two~rational~numbers={\dfrac{2}{5}}}
  • \sf{One~of~the~number~is~{\dfrac{-4}{7}}}

\bf{{\underline{To~find}}:}

  • \sf{The~other~number}

\bf{{\underline{Solution}}:}

  • \sf{Let~the~number~be~~‛x’}

\sf{~~~~~~~~~~ x+{\dfrac{-4}{7}}={\dfrac{2}{5}}}

\sf\implies{x={\dfrac{2}{5}}-{\dfrac{-4}{7}}}

\sf\implies{x={\dfrac{(2×7)-(-4×5)}{35}}~~~~~~(LCM=35)}

\sf\implies{x={\dfrac{14-(-20)}{35}}}

\sf\implies{x={\dfrac{14+20}{35}}}

\sf\implies{x=\purple{\underline{\boxed{\bf~{\dfrac{34}{35}}~}}}}

\bf\therefore{{\underline{Required~answer}}:}

  • \sf{Unknown~number,~~x~~is~{\purple{\bf {\dfrac{34}{35}}}}}

\bf{{\underline{Verification}}:}

\sf{~~~~ {\dfrac{-4}{7}}+{\dfrac{34}{35}}}

\sf{={\dfrac{(5×-4)+34}{35}}~~~~~~(LCM=35)}

\sf{={\dfrac{-20+34}{35}}}

\sf{={\dfrac{14}{35}}}

\sf{={\dfrac{\cancel{14}~~^{2}}{\cancel{35}~~^{5}}}~~~~~~~~~~~~Taking~7~as~common~factor}

\bf{={\purple{\bf {\dfrac{2}{5}}}}=RHS}

{}

  • \bf{Hence~verified~!}
Similar questions