Math, asked by parveenkainat34, 3 months ago

the sum of two roots of x²- px+q =0 is thrice of their difference.Then which is the correct relation_____
options
(a) 9p²=2q
(b) 2p²=9q
(c) 2p²+9q=0
(d) 9p²+2q=0
(please solve this sum)​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

 \sf \: Let \: zeroes \: of \:  {x}^{2} - px + q \: be \:  \alpha  \: and \:  \beta.

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha   + \beta  =  -  \: \dfrac{ (- p)}{1}  = p

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{q}{1}  = q

Now,

According to statement,

\rm :\longmapsto\: \alpha  +  \beta  = 3( \alpha  -  \beta )

\rm :\longmapsto\:p = 3 \sqrt{ {( \alpha  + \beta)}^{2} - 4 \alpha  \beta  }

\rm :\longmapsto\:p = 3 \sqrt{ {( p)}^{2} - 4q}

On squaring both sides, we get

\rm :\longmapsto\: {p}^{2}  = 9( {p}^{2} - 4q)

\rm :\longmapsto\: {p}^{2}  = 9{p}^{2} - 36q

\rm :\longmapsto\: 8{p}^{2}  =  36q

\bf\implies \: {2p}^{2}  = 9q

Hence,

  • Option (b) is correct.

Additional Information :-

 \sf \: Let \: zeroes \: of \:  {ax}^{3} +  {bx}^{2} + cx + d \: be \:  \alpha, \:  \beta \: and \:  \gamma  \: then

\rm :\longmapsto\: \alpha + \beta + \gamma  =  -  \: \dfrac{b}{a}

\rm :\longmapsto\: \alpha \beta  + \beta  \gamma + \gamma  \alpha  =   \: \dfrac{c}{a}

\rm :\longmapsto\: \alpha \beta \gamma  =  -  \: \dfrac{d}{a}

Similar questions