Math, asked by rounakagarwal1111, 1 year ago

the sum upto infinity of the series (1+2^-2)+(2^-1+2^-4)+(2^-2+2^-6)+...... is

Answers

Answered by Anonymous
0

= 1(2) + 2(2²) + 3(2³) +... + 100(2^100)

This is an arithmetico geometric series , with A.P : 1,2,3,...,100

G.P : 2,2²,2³,....,2^100

Now,

S = 1(2) + 2(2²) + 3(2³) + ..... + 100(2^100)                   .........(i)

.°. 2S = 1(2²) + 2(2³) + 3(2⁴) + .... + 99(2^100) + 100(2^101) ......(ii)

Subtracting equation (ii) from (i) we get

-S = 2 + 2²(2-1)+2³(3-2)+....+2^100(100-99) - 100(2^101)

   = (2 + 2² + 2³ + .... + 2^100) - 100(2^101)

.°. -S    = 2[(2^100) - 1] - 100(2^100)

                   100-1

.°. S = 100(2^100) - 2[(2^100) - 1]

                                          99

Answered by Anonymous
3

Answer:

Step-by-step explanation:We will use the following known sums (each of which can be proven via induction):

n

i

=

1

i

=

n

(

n

+

1

)

2

n

i

=

1

i

2

=

n

(

n

+

1

)

(

2

n

+

1

)

6

n

i

=

1

(

i

3

)

=

n

2

(

n

+

1

)

2

4

With those:

(

1

2

)

+

(

1

2

+

2

2

)

+

...

+

(

1

2

+

2

2

+

...

+

n

2

)

=

n

i

=

1

(

1

2

+

2

2

+

...

+

i

2

)

=

n

i

=

1

i

j

=

1

j

2

=

n

i

=

1

i

(

i

+

1

)

(

2

i

+

1

)

6

=

n

i

=

1

2

i

3

+

3

i

2

+

i

6

=

n

i

=

1

1

3

i

3

+

n

j

=

1

1

2

j

2

+

n

k

=

1

1

6

k

=

1

3

n

i

=

1

i

3

+

1

2

n

j

=

1

j

2

+

1

6

n

k

=

1

k

=

1

3

(

n

2

(

n

+

1

)

2

4

)

+

1

2

(

n

(

n

+

1

)

(

2

n

+

1

)

6

)

+

1

6

(

n

(

n

+

1

)

2

)

=

n

2

(

n

+

1

)

2

12

+

n

(

n

+

1

)

(

2

n

+

1

)

12

+

n

(

n

+

1

)

12

=

n

(

n

+

1

)

[

n

(

n

+

1

)

+

(

2

n

+

1

)

+

1

]

12

=

n

(

n

+

1

)

(

n

2

+

3

n

+

2

)

12

=

n

(

n

+

1

)

2

(

n

+

2

)

12

Similar questions