Math, asked by meyogshrisinha2311, 5 months ago

The surface area of a cuboid 15 cm broad and 10 cm high is 1300 cm. Find Its length.​

Answers

Answered by aaron12041
1

Answer:

TSA= 1300CM^2

TSA= 2(LB +BH +HL)

1300 = 2(L*15 +15*10 +10*L)

1300 = 2(15L +150 +10L)

2(25L +150)

50L +300

1300 -300 =50L

1000/50 = L

L =20

Step-by-step explanation:

Answered by Anonymous
11

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: Question}}}

The surface area of a cuboid 15 cm broad and 10 cm high is 1300 cm. Find Its length.

_____________________________________________

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: Answer}}}

The surface area of a cuboid 15 cm broad and 10 cm high is 1300 cm. it's length will be 20 cm

_____________________________________________

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: Solution}}}

Given,

» The surface area of a cuboid is 15 cm broad

» The surface area of a cuboid is 10 cm high

» The surface area of a cuboid is 1300 cm²

To find ,

» length of surface area of a cuboid is = ?

~ Let's solve it ,

_____________________________________________

Let , length of the surface are of the square be x

so

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf surface \: area \: of \: cuboid \:  = 2(lb + bh + lh)}}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf 1300\:  = 2((l \times 15 )+ (15 \times 10) +( l \times 10))}}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf 1300\:  = 2(15 l+ 150 + 10l)}}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf  \dfrac{1300}{2}  = (15 l+ 150 + 10l)}}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf 650\:  = 150 + 25l}}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf 25l\:  = 500 \: (as \: 650 - 150)}}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf l\:  =  \dfrac{500}{25} }}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \Longrightarrow{\sf l\:  =  20 }}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered}

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: hence , length =  \underline{20 \: cm}}}}

Similar questions