The surface area of a cuboid is 4212 meter square if its dimensions are in ratio 4:3:2. Find the volume
Answers
Answered by
10
Answer:
l=4×9=36
w=3×9=27
h=2×9=18
Step-by-step explanation:
let one angle be 'x' then l=4x,w=3x,h=2x.
as the formulae isSA=2lw+2lh+2hw, to find the surface area.
Then 2(4x)(3x)+2(4x)(2x)+2(2x)(3x)=4212
=2(12x+8x+6x)=4212
2(26x)=4212
52x=4212
x=81sqm
x=9m
there fore
l=36
w=27
h=18
Answered by
6
Answer:
Let length(l) be 4a m, breadth(b) be 3a m and height(h) be 2a m
surface area of cuboid=4212 m sq.
surface area of cuboid= 2 (lb+bh+hl)
2 (4a×3a + 3a×2a + 2a×4a)=4212 m sq.
2 (12a sq.+6a sq.+8a sq.)=4212 m sq.
2× 26a sq.= 4212 m sq.
52 a sq. = 4212 m sq.
a sq.=4212/52
a sq.=81
a=9 m
l= 4a
=4×9=36m
b=3a
=3×9=27m
h=2a
=2×9=18m
Volume of cuboid=lbh
=36×27×18 cubic m
=17,496 cubic m
Similar questions