Math, asked by pankajverma1340, 10 months ago

The surface area of a solid metallic sphere is 616cmsquare. It melted and recast into small sphere of diameter 3.5cm. how many such spheres can be obtained

Answers

Answered by Anonymous
6

\sf\red{\underline{\underline{Answer:}}}

\sf{64 \ spheres \ can \ be \ obtained.}

\sf\orange{Given:}

\sf{For \ sphere(1),}

\sf{\implies{Surface \ area=616 \ cm^{2}}}

\sf{For \ sphere(2),}

\sf{\implies{Diameter (D)=3.5 \ cm}}

\sf\pink{To \ find:}

\sf{Number \ of \ spheres \ that \ can \ be \ obtained.}

\sf\green{\underline{\underline{Solution:}}}

\sf{For \ sphere(1),}

\boxed{\sf{Surface \ area \ of \ sphere=4\pi\times \ r^{2}}}

\sf{\therefore{616=4\times\frac{22}{7}\times \ r^{2}}}

\sf{\therefore{r^{2}=\frac{616\times7}{4\times22}}}

\sf{\therefore{r^{2}=7\times7}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\therefore{r=7 \ cm}}

\sf{For \ sphere(2),}

\sf{Radius (R)=\frac{Diameter}{2}=\frac{3.5}{2}}

\sf{\therefore{Radius (R)=\frac{3.5}{2} \ cm}}

\boxed{\sf{Volume \ of \ Sphere=\frac{4}{3}\times\pi\times \ r^{3}}}

\sf{Number \ of \ sphere=\frac{Volume \ of \ sphere(1)}{Volume \ of \ sphere (2)}}

\sf{=\frac{\frac{4}{3}\times\pi\times \ r^{3}}{\frac{4}{3}\times\pi\times \ R^{3}}}

\sf{=\frac{r^{3}}{R^{3}}}

\sf{=\frac{7\times7\times7}{\frac{3.5}{2}\times\frac{3.5}{2}\times\frac{3.5}{2}}}

\sf{=\frac{7\times7\times7\times2\times2\times2}{3.5\times3.5\times3.5}}

\sf{=2\times2\times2\times2\times2\times2}

\sf{=8\times8}

\sf{\therefore{Number \ of \ sphere=64}}

\sf\purple{\tt{\therefore{64 \ spheres \ can \ be \ obtained.}}}

Similar questions