Math, asked by Amayra1440, 3 months ago

The surface area of a sphere is 3844 m². Find the
radius of the sphere.
(1) 41 cm (2) 25 cm (3) 31 cm (4) 33 cm​

Answers

Answered by alisasmoky22
2

Answer:

I cannot find the correct answer here

Step-by-step explanation:

4*pi*r^2 = 3844

or, r^2 = 305.895

or, r = 17.49 m

Answered by Anonymous
136

Answer:

\large{\sf{\pmb{\underline{\red{Given:-}}}}}

  • ● The surface area of a sphere is 3844 m².

\large\sf{\pmb{\underline{\red{To  \: Find:-}}}}

  • ● The radius of the sphere.

\large{\sf{\pmb{\underline{\red{Formula \: Used:-}}}}}

\bigstar{\underline{\boxed{\sf{\pink{S.A \:  of  \: Sphere = 4{\pi} {r}^{2}}}}}}

Where

  • • S.A of Sphere = Surface area of Sphere
  • • π = 22/7
  • • r = radius of Sphere

\large{\sf{\pmb{\underline{\red{Solution :-}}}}}

{\underline{\frak{\pmb{ \bigstar{ \: According  \: to \:  the \:  Question}}}}}

{:\implies{\sf{S.A \:  of  \: Sphere  =  \bf{4{\pi} {r}^{2}}}}}

  • ~Substituting the values

{:\implies{\sf{3844 \:  {m}^{2} =  \bf{4{\pi} {r}^{2}}}}}

{:\implies{\sf{3844 \:  {m}^{2}= \bf{4\times \dfrac{22}{7} \times {r}^{2}}}}}

{:\implies{\sf{ \dfrac{3844}{4} = \bf\dfrac{22}{7} \times {r}^{2}}}}

{:\implies{\sf{\cancel{\dfrac{3844}{4}} = \bf\dfrac{22}{7} \times {r}^{2}}}}

{:\implies{\sf{961= \bf\dfrac{22}{7} \times {r}^{2}}}}

{:\implies{\sf{\dfrac{961 \times 7}{22}  =  \bf {r}^{2}}}}

{:\implies{\sf{\dfrac{6727}{22}  = \bf  {r}^{2}}}}

{:\implies{\sf{305.77= \bf{r}^{2}}}}

{:\implies{\sf{ \sqrt{305.77} =  \bf{r}}}}

 {:\implies{\sf{r =  \bf{17.48}}}} \:  \:  \:  \:  \:  \:  \:  \sf \red{ 17.5 \: m \: (approx)}

 \bigstar\underline{\boxed{\sf{\pink{r = 17.5 \: m}}}}

Henceforth,The radius of Sphere is 17.5 m (approx).

\large{\sf{\pmb{\underline{\red{Know \:  More  :-}}}}}

\begin{gathered} \small\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c}   \star\bf \underline{More \:  Useful  \: Formula } \star \\  \\ \  \leadsto\sf{Radius \:  of  \: Sphere = \dfrac{d}{2}  } \\  \\ \leadsto\textsf{ Voume of cylinder = πr²h} \\  \\ \leadsto \textsf{ T.S.A of cylinder = 2πrh + 2πr²} \\ \\  \leadsto\textsf{ Volume of cone = ⅓ πr²h} \\  \\  \leadsto \textsf{C.S.A of cone = πrl }\\ \\   \leadsto\textsf{ T.S.A of cone = πrl + πr²} \\   \\  \leadsto\sf{ Volume\: of\: cuboid = l  \times b  \times  h} \\   \\ \leadsto\textsf{C.S.A of cuboid = 2(l + b)h }\\  \\   \leadsto\textsf{T.S.A of cuboid = 2(lb + bh + lh)} \\  \\ \leadsto \textsf{ C.S.A of cube = 4a² }\\ \\   \leadsto\textsf{T.S.A of cube = 6a²} \\ \\  \leadsto\textsf{Volume of cube = a³}  \\ \\  \leadsto\textsf{ Volume of sphere = (4/3)πr³ }  \\  \\  \leadsto\textsf{Surface area of sphere = 4πr²} \\  \\  \leadsto\textsf{Volume of hemisphere = ⅔ πr³} \\  \\  \leadsto\textsf{ C.S.A of hemisphere = 2πr² }\\ \\   \leadsto\textsf{ T.S.A of hemisphere = 3πr² } \\  \\ { \qquad \qquad \qquad}{}\end{array}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}

Similar questions