Math, asked by DarshanParmar00, 11 months ago

The surface area of a sphere is 5514 sq cm. Find its diameter and volume.​

Answers

Answered by Anonymous
10

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf Diameter (d)=42cm}}

\large\red{\boxed{\sf Volume\:of\:sphere(V)=38808cm^3 }}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Surface area of sphere (A) = 5514\sf{cm^2}

\large\underline\pink{\sf To\:Find: }

  • Diameter of sphere (d) = ?

  • Volume of sphere (V) = ?

━━━━━━━━━━━━━━━━━━━━━━━━━━

We know ,

\large{\boxed{\sf Surface\:Area(A)=4πr^2 }}

\large\implies{\sf 5514=\frac{22}{7}×r^2}

\large\implies{\sf r^2=\frac{5514×7}{22×4} }

\large\implies{\sf r = approx.21\:cm }

Hence ,

Diameter (d) = 2r

\large\implies{\sf d=2×21 }

\large\implies{\sf d=42\:cm}

\large\red{\boxed{\sf Diameter (d)=42cm}}

Now ,

\large{\boxed{\sf Volume(V)=\frac{4}{3}πr^3}}

\large\implies{\sf V=\frac43×\frac{22}{7}×(21)^3 }

\large\implies{\sf V=38808cm^3 }

\large\red{\boxed{\sf Volume\:of\:sphere(V)=38808cm^3 }}

Diameter of sphere 42cm and volume of sphere \large\underline{\sf 38808cm^3}

Answered by Shreya091
138

\huge{\boxed{\boxed{\mathfrak{\blue{Answer:-}}}}}

{\bold{\underline{\underline{Given:-}}}}

Surface area = \ 5512cm^2

{\bold{\underline{\underline{To \: find :-}}}}

Diameter =

Volume=

{\bold{\underline{\underline{Step-by-step-explanation:-}}}}

Surface area =  \ 4πr^2

\implies\ 5512 = 4 \times\frac {22}{7} \times\ r ^2  \\ \\ \implies\ r^2= \frac {5514 \times\ 7}{ 22 \times\ 4} \\ \\ \implies\ r= 21 (app.)

Hence,

\implies\ Diameter = 2r \\ \\ \implies\ 2 \times\ 21 \\ \\ \implies\ Diameter = 42cm

Now,

\implies\ Volume = \frac {4}{3}πr^3 \\ \\ \implies\frac {4}{3} \times\frac {22}{7} \times\ {21}^{3} \\ \\ \implies\ Volume =38808cm^3

\mathbb\red{Thanks...}

Similar questions