Physics, asked by dishapakhrani12, 10 months ago

the surface density of conducting sphere is 7.7 into 10 to the power minus 10 coulomb per metre square and electric field intensity at a distance of 4 m from the centre of the sphere is 200 into 10 to the power minus 2 volt metre find the radius of the sphere assuming the sphere to be vacuum​

Answers

Answered by Anonymous
0

   \mathfrak{\red{ \underline{ \underline{answer}}}} \implies \:  \\ →26.4 m \\ \\  \bf{ \underline{explanation}} :  -  \\  \\

Given:-

distance \: (d) = 4 \: m \\ charge \: density \:  \: ( \sigma) = 7.7 \times  {10}^{ - 10}  \frac{c}{ {m}^{2} }  \\ electric \: field \: intensity \: (E )= 200 \times  {10}^{ - 2}  \:  \: v \: m

To find :-

Radius of sphere =?

Let permittivity of free space is g.

  \underline{\bf{soltion}} :  -  \\  \\ let \: radius \: of \: sphere \: is \: r \:  \\  \\ we \: know \: that \\  \\ \implies \:  E =  \frac{ \sigma \:  {r}^{2} }{g {d}^{2} }  \\  \\  \implies \: 200 \times  {10}^{ - 2}  =  \frac{7.7 \times  {10}^{ - 10 }  \times 4 \times 4}{8.85 \times  {10}^{ - 12}  \times  {r}^{2} }  \\  \\   \implies \:  {r}^{2}  =  \frac{7.7 \times 16 \times  {10}^{ - 10} }{8.85 \times 200 \times  {10}^{ - 14} }  \\  \\  \implies \:  {r}^{2}  =  \frac{1232 \times  {10}^{3}  }{885 \times 2}  \\  \\  \implies \:  {r}^{2}  =  \frac{1232}{1770}  \times  {10}^{3}  \\  \\  \implies \: r = 2.64 \times 10  \\  \\  \:  \implies \: r = 26.4 \: m \: (aprrox)

Similar questions