Math, asked by chethanchowdary, 9 months ago

The system of equations sin x cos y = a’ and
siny.cosx = a
has a solution if lalsi
1-15
1+15
<a<
has a solution only if
2
2.
1-15
has a solution only if
2
as +1+v5
<
2
can hold if a = -1​

Answers

Answered by hukam0685
0

Step-by-step explanation:

Given that:

The system of equations 'sin x cos y = a’ and siny.cosx = a'

To find: Solution of equation

Solution:

Let

sinx \: cos \: y = a \:  \:  \:  \: ...eq1 \\  \\ siny \: cos \: x = a \:  \:  \:  \: ...eq2 \\  \\

Add both eq1 and eq2

sinx \: cos \: y + siny \: cos \: x = a +  a \\  \\ sin(x + y) = 2a \\  \\ or \\  \\ x + y =  {sin}^{ - 1}2a \:  \:  \: ...eq3 \\  \\   \because \\  \\ \boxed{sinA \: cos \: B+ cos A \: sin \: B = sin(A+ B)} \\  \\

Subtract both equations

sinx \: cos \: y -  siny \: cos \: x = a  -   a \\  \\ sin(x  -  y) = 0 \\  \\ or \\  \\ x  -  y =  {sin}^{ - 1}0 = 0 \:  \:  \: ...eq4 \\  \\   \because \\  \\ \boxed{sinA \: cos \: B- cos A \: sin \: B = sin(A-B)}  \\

From eq3 and eq4

add both eq3 and eq4

x + y =  {sin}^{ - 1} 2a \\ x - y = 0 \\  -  -  -  -  -  -  \\ 2x =  {sin}^{ - 1} 2a \\  \\  \bold{x =  \frac{1}{2}  {sin}^{ - 1} 2a }\\  \\

Put thus value of x in eq4

x - y = 0 \\  \\  \frac{1}{2}  {sin}^{ - 1} 2a - y = 0 \\  \\ \bold{ y = \frac{1}{2}  {sin}^{ - 1} 2a} \\  \\

Hope it helps you.

Similar questions