Math, asked by rajukudchadkar, 1 year ago

THE T.S.A OF CYLINDER IS 3696CM².IF THE HEIGHT OF THE CYLINDER IS TWICE THE RADIUS FIND ITS VOLUME.

Answers

Answered by pmsingh2212004
1

Answer:

Maybe TSA should be 2696. Could you please confirm?

Answered by Anonymous
0

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

\small{\underline{\blue{\sf{Given :}}}}

  • T. S. A of cylinder is 3696 cm²

\rule{200}{1}

\small{\underline{\green{\sf{Solution :}}}}

Let the radius of cylinder be x.

So, Height of cylinder is 2x.

We know the formula to find the T. S. A. of cylinder

\Large{\boxed{\sf{T.S.A = 2 \pi r(r + h)}}}

______________[Put Values]

\sf{→3696 = 2 \times \frac{22}{7} \times x(x + 2x)} \\ \\ \sf{→\cancel{3969} \times \frac{7}{\cancel{44}} = 3x^2} \\ \\ \sf{→1176 = 3x^2} \\ \\ \sf{→\frac{1176}{3} = x^2} \\ \\ \sf{→392 = x^2} \\ \\ \sf{→x = (\sqrt{392})^2} \\ \\ \sf{→x = 20}

∴ Radius = 20 cm

Height = 40 cm

\rule{200}{2}

Now,

\Large{\star{\boxed{\sf{Volume = \pi r^2 h}}}}

________________[Put Values]

\sf{→Volume = \frac{22}{7} \times (20)^2 \times 40} \\ \\ \sf{→Volume = \frac{22}{7} \times 16000} \\ \\ \sf{→Volume = \frac{352000}{7}} \\ \\ \sf{→Volume = 50285.7}

\Large{\star{\boxed{\sf{Volume = 50285.7 \: cm^3}}}}

Similar questions