Physics, asked by dinumanikandan8367, 1 year ago

The table below shows the salaries of 280 persons : salary =5-10,10-15,15-20,20-25,25-30,30-35,35-40,40-45,45-50.no.of person 49,133,63,15,6,7,4,2,1 calculate the median salary of the data

Answers

Answered by Avengers00
14
\underline{\underline{\Huge{\textbf{Question:}}}}

\sf\textsf{The table below shows the salaries of 280 persons.}\\ \sf\textsf{Calculate the median salary of the data}

\small{\begin{array}{|c|c|c|c|c}\cline{1-5}\bf Salary&5-10&10-15&15-20&20-25\\\cline{1-5}\bf No. of persons&49&133&63&15\\\cline{1-5}\end{array}}
\small{\begin{array}{c|c|c|c|c|c|}\cline{1-6}\bf Salary&25-30&30-35&35-40&40-45&45-50\\\cline{1-6}\bf No. of persons&6&7&4&2&1\\\cline{1-6}\end{array}}

\\

\underline{\Huge{\textsf{Concept Behind:}}}

\boxed{\begin{minipage}{9 cm}\maltese \: \: \tt Median of Grouped data \approxeq \quad \bf l + $\left(\dfrac{\frac{\bf N}{\bf 2}-\bf cf}{\bf f}\right) \times$ \bf h\\\\ where\\ l = Lower limit of median class \\\: N = Total no. of observations\\\: cf = Cumulative Frequency of the class before the median class \\\: f = Frequency of the median class\\\:h = Class width\\\\\maltese \: \: \tt Median Class is the class whose cumulative frequency is greater and nearest to $\frac{N}{2}$\end{minipage}}

\\

\underline{\underline{\Huge{\textsf{Solution:}}}}

\underline{\LARGE{\texttt{Step-1:}}}

\sf\textsf{Note the No. Of Observations and Class width}

\sf\textsf{No. Of observations , \textbf{N}= 280}

\textsf{Class Width is the difference between}\\\sf\textsf{Upper and Lower boundary of a class}

\therefore \textsf{Class width, \textbf{h}= 10-5 = 5}

\underline{\LARGE{\texttt{Step-2:}}}

\sf\textsf{Add the Frequencies cumulatively for each class}

\sf\textsf{Here, the Frequencies refer to the No. of persons}

\begin{array}{|c|c|cc|}\cline{1-4}\bf Salary &amp;\bf Frequency &amp; \bf Cumulative &amp; \bf Frequency\\\cline{1-4}5-10&amp;49&amp;&amp;=\: 49\\10-15&amp;133&amp;49+133&amp;\: \; =\bf 182\\15-20&amp;63&amp;182+63&amp;=245\\20-25&amp;15&amp;245+15&amp;=260\\25-30&amp;6&amp;260+6&amp;=266\\30-35&amp;7&amp;266+7&amp;=273\\35-40&amp;4&amp;273+4&amp;=277\\40-45&amp;2&amp;277+2&amp;=279\\45-50&amp;1&amp;279+1&amp;=280<br /><br />\\\cline{1-4}\end{array}

\underline{\LARGE{\texttt{Step-3:}}}

\sf\textsf{Find the Median Class}

\sf\textsf{Here}\\\sf\textsf{The total Frequency, \textbf{N} = 280}

\dfrac{N}{2} = \dfrac{280}{2} = 140

\sf\textsf{The cumulative frequency greater than or}\\\sf\textsf{nearest to 140 is 182.}

\sf\textsf{The class having this Value (i.e., 182)}\\\sf\textsf{is the Median class for the given data.}

\therefore \textbf{Median Class = 10 - 15}

\underline{\LARGE{\texttt{Step-4:}}}

\sf\textsf{Note the lower limit and frequency of the Median Class}\\\sf\textsf{and cumulative frequency of the class before median class}

\sf\textsf{Lower limit of the median class, \textbf{l} = 10}

\sf\textsf{Frequency of the median class, \textbf{f} = 133}

\sf\textsf{Cumulative frequency of the class before the median class, \textbf{cf} = 49}

\underline{\LARGE{\texttt{Step-5:}}}

\sf\textsf{Find the median of the given data}

\mathbf{Median \approxeq l + \left(\dfrac{\frac{N}{2}-cf}{f}\right) \times h}

\sf\textsf{Substitute Values}

\implies \mathsf{median \approxeq 10 + \left(\dfrac{\frac{280}{2}-49}{133}\right) \times 5}

\implies \mathsf{median \approxeq 10 + \left(\dfrac{140-49}{133}\right)\times 5}

\implies \mathsf{median \approxeq 10 + \left(\dfrac{140-49}{133}\right)\times 5}

\implies \mathsf{median \approxeq 10 + \left(\dfrac{91\times 5}{133}\right)}

\implies \mathsf{median \approxeq 10 + \left(\dfrac{455}{133}\right)}

\small{\boxed{\begin{array}{rcl}133)&amp;\: \: 455&amp;(3.421\\&amp;\underline{-399\; \; }&amp;\\&amp;\quad560&amp;\\&amp;\: \; \, \underline{-532\; \;}&amp;\\&amp;\qquad \: \, 280&amp;\\&amp;\qquad \: \underline{-266\; \; \: }\\&amp;\qquad\quad\:\; 140&amp;\\&amp;\qquad\quad \, \underline{-133\; \; }&amp;\\&amp;\qquad\qquad7&amp;\end{array}}}

\therefore \mathsf{\dfrac{455}{133} = 3.421}

\implies \mathsf{median \approxeq 10 + 3.421}

\therefore \mathbf{Median \approxeq 13.421}

\\
\blacksquare \: \: \sf\textsf{The median Salary of the data =\Large{\underline{\LARGE{\textbf{13.421}}}}}
Similar questions