Math, asked by sidharthmakhloga017, 7 months ago

The tangents drawn at the end points of a diameter of a circle are parallel because

Answers

Answered by himanshu0598
1

Step-by-step explanation:

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively. Radius drawn to these tangents will be perpendicular to the tangents. Since alternate interior angles are equal, lines PQ and RS will be parallel.

Answered by hshahi1972
16

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively.

Radius drawn to these tangents will be perpendicular to the tangents.

Thus, OA ⊥ RS and OB ⊥ PQ

∠OAR = 90º

∠OAS = 90º

∠OBP = 90º

∠OBQ = 90º

It can be observed that

∠OAR = ∠OBQ (Alternate interior angles)

∠OAS = ∠OBP (Alternate interior angles)

Since alternate interior angles are equal, lines PQ and RS will be parallel

Attachments:
Similar questions