Math, asked by anshuman989791, 6 months ago

The taxi fare in the city is as follows: for the first kilometre the fare is rupees 50 and for subsequent distance it is rupees 15 per kilometre. Taking the distance covered as x kilometre and Total fare as Rupees y. Write a linear equation for this information. plz help fast in 5 min plz plz on copy​

Answers

Answered by ItzAditya14
0

Answer:

The taxi fare in the city is as follows: for the first kilometre the fare is rupees 50 and for subsequent distance it is rupees 15 per kilometre. Taking the distance covered as x kilometre and Total fare as Rupees y. Write a linear equation for this information. plz help fast in 5 min plz plz on copy

Answered by lavanyapunjala
0

Answer:     1.   The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.       (Take the cost of a notebook to be Rs. x and that of a pen to be Rs. y).

Sol: Let the cost of a notebook = Rs x            The cost of a pen = y            According to the condition, we have                            [Cost of a notebook] = 2 × [Cost of a pen]            i.e.            [x] = 2 × [Y]            or              x = 2y            or              x – 2y = 0       Thus, the required linear equation is × – 2y = 0.

2.   Express the following linear equations in the form ax + by + c = 0 and indicate the values of a, b and c in each case:

     (i)        (ii)        (iii) –2x + 3y = 6       (iv) x = 3y      (v) 2x = –5y               (vi) 3x + 2 = 0          (vii) y – 2 = 0           (viii) 5 = 2x

Sol: (i) We have                    Comparing it with ax + bx + c = 0, we have a = 2, b = 3 and  

     (ii) We have              

     

     Comparing with ax + bx + c = 0, we get      

Note: Above equation can also be compared by:Multiplying throughout by 5,          or 5x – y – 50 = 0or 5(x) + (–1)y + (–50) = 0Comparing with ax + by + c = 0, we get a = 5, b = –1 and c = –50.

(iii) We have             –2x + 3y = 6      ⇒                      –2x + 3y – 6 = 0      ⇒                      (–2)x + (3)y + (–6) = 0      Comparing with ax + bx + c = 0, we get a = –2, b = 3 and c = –6.

(iv) We have             x = 3y      x – 3y = 0      (1)x + (–3)y + 0 = 0      Comparing with ax + bx + c = 0, we get a = 1, b = –3 and c = 0.

(v) We have 2x = –5y      ⇒                      2x + 5y =0      ⇒                      (2)x + (5)y + 0 = 0      Comparing with ax + by + c = 0, we get a = 2, b = 5 and c = 0.

(vi) We have 3x + 2 = 0      ⇒                      3x + 2 + 0y = 0      ⇒                      (3)x + (10)y + (2) = 0      Comparing with ax + by + c = 0, we get a = 3, b = 0 and c = 2.

(vii) We have y – 2 = 0      ⇒                      (0)x + (1)y + (–2) = 0      Comparing with ax + by + c = 0, we have a = 0, b = 1 and c = –2.

(viii) We have 5 = 2x      ⇒                      5 – 2x = 0      ⇒                      –2x + 0y + 5 = 0      ⇒                      (–2)x + (0)y + (5) = 0      Comparing with ax + by + c = 0, we get a = –2, b = 0 and c = 5.

EXERCISE: 4.2

1.   Which one of the following options is true, and why?            y = 3x + 5 has

      (i) a unique solution, (ii) only two solutions, (iii) infinitely many solutionsSol: Option (iii) is true because a linear equation has an infinitely many solutions.

2.   Write four solutions for each of the following equations:

     (i) 2x + y = 7      (ii) πx + y = 9      (iii) x = 4ySol: (i) 2x + y = 7      When x = 0, 2(0) + y = 7      ⇒                      0 + y = 7      ⇒                      y =7      ∴ Solution is (0, 7).      When x = 1, 2(1) + y = 7      ⇒                      y = 7 – 2      ⇒                      y = 5      ∴ Solution is (1, 5).      When x = 2, 2(2) + y = 7      ⇒                      y = 7 – 4      ⇒                      y = 3      ∴ Solution is (2, 3).      When x = 3, 2(3) + y = 7      ⇒                      y = 7 – 6      ⇒                      y = 1      ∴ Solution is (3, 1).(ii) πx + y = 9      When x = 0 π(0) + y = 9      ⇒                      y = 9 – 0      ⇒                      y = 9      ∴ Solution is (0, 9).      When × = 1, π(1) + y = 9      ⇒                      y = 9 – π      ∴ Solution is {1, (9 – π)}      When x = 2, π(2) + y = 9      ⇒                      y = 9 – 2π      ∴ Solution is {2, (9 – 2π)}      When × = –1, π(–1) + y = 9      ⇒                      – π + y = 9      ⇒                      y = 9 + π      ∴ Solution is {–1, (9 + π)}(iii) x = 4y      When x = 0, 4y = 0      ⇒                      y = 0      ∴ Solution is (0, 0).      When x = 1, 4y = 1      ⇒                      y = 0      ∴ Solution is (0, 0)      When x = 4, 4y = 4      ⇒                            

3.   Check which of the following are solutions of the equation x – 2y = 4 and which are not:

     (i) (0, 2)              (ii) (2, 0)      (iii) (4, 0)      (iv)       (v) (1, 1)Sol: (i) (0, 2) means x = 0 and y = 2      Putting x = 0 and y = 2 in x – 2y = 4, we have                  L.H.S. = 0 – 2(2) = –4      But       R.H.S. = 4                  L.H.S. ≠ R.H.S.      ∴ x = 0, y = 0 is not a solution.(ii) (2, 0) means x = 2 and y = 0      ∴ Putting x = 2 and y = 0 in x – 2y = 4, we get                  L.H.S. = 2 – 2(0) = 2 – 0 = 2      But       R.H.S. = 4                  L.H.S. ≠ R.H.S.      ∴ (2, 0) is not a solution.(iii) (4, 0) means x = 4 and y = 0      Putting x = 4 and y = 0 in x – 2y = 4, we get                  L.H.S. = 4 – 2(0) = 4 – 0 = 4      But       R.H.S. = 4                  L.H.S. ≠ R.H.S.      ∴ (4, 0) is a solution.(v) (1, 1) means x = 1 and y = 1      Putting x = 1 and y = 1 in x – 2y = 4, we get      L.H.S. = 1 – 2(1) = 1 – 2 = –1      But       R.H.S. = 4      ⇒                      L.H.S ≠ R.H.S.      ∴ (1, 1) is not a solution.

Similar questions