Math, asked by kavalisreeya223, 3 months ago

the term independent of x in the expansion of [4x³+7/x²]¹⁴​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

↝Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

 \sf \: The \:  general  \: term  \: of \:  an \:  expansion  \: of \:  {(x + y)}^{n}  \: is \:

 \underline{ \boxed{ \bf \: T_{(r+1)}  = \:^n C_r \:  {x}^{(n - r)}  {y}^{r} }}

↝ Now,

\rm :\longmapsto\:In \: expansion \: of \:  {\bigg( {4x}^{3}   + \dfrac{7}{ {x}^{2} } \bigg) }^{14}

\rm :\longmapsto\:The \:  general \:  term \: is \: given \: by

\rm :\longmapsto\:T_{(r+1)}  = \:^{14} C_r \:  {\bigg( {4x}^{3}  \bigg) }^{14 - r}  {\bigg(\dfrac{7}{ {x}^{2} }  \bigg) }^{r}

\rm :\longmapsto\:T_{(r+1)}  = \:^{14} C_r \:  {4}^{(14 - r)}  {(x)}^{42 - 3r} \dfrac{ {7}^{r} }{ {x}^{2r} }

\rm :\longmapsto\:T_{(r+1)}  = \:^{14} C_r \:  {(4)}^{14 - r}  {(7)}^{r} {(x)}^{42 - 3r - 2r}

\rm :\longmapsto\:T_{(r+1)}  = \:^{14} C_r \:  {(4)}^{14 - r}  {(7)}^{r} {(x)}^{42 - 5r}

↝ Now, for term to be independent of 'x',

\rm :\longmapsto\:Put \: 42 - 5r = 0

\rm :\longmapsto\:5r = 42

\bf\implies \:r = \dfrac{42}{5}  = 8.4  \:  \:   \cancel\in \: integer.

\bf\implies \:There \: is \: no \: term \: in \:  expansion \: independent \: of \: x

Additional Information :-

 \underline{ \boxed{ \bf \: If \: \:^n C_x = \:^n C_y \:  \implies \: x = y \:  \: or \:  \: n = x + y}}

 \underline{ \boxed{ \bf \: \:^n C_r + \:^n C_{r - 1} = \:^{n + 1} C_r}}

 \underline{ \boxed{ \bf \: \dfrac{\:^n C_r}{\:^n C_{r - 1}}  = \dfrac{n - r + 1}{r}}}

Similar questions