Math, asked by kamalhajare543, 12 days ago

the term independent of x in the expansion of
 \sqrt{ \frac{x}{3} }  -  \frac{ \sqrt{3} }{2x}
Solve it.
no spam
don't say I don't know ​

Answers

Answered by GraceS
1

\tt\huge\purple{hello!!!}

HERE IS UR ANSWER

_____________________________

 \sqrt{ \frac{x}{3} } - \frac{ \sqrt{3} }{2x}

 \frac{2x \sqrt{x} - 3 }{2x \sqrt{3} }

 \frac{2 {x}^{ \frac{3}{2}}  - 3}{2x \sqrt{3} }

Answered by BrainlyArnab
3

Step-by-step explanation:

  \bf\sqrt{ \frac{x}{3} }  -  \frac{  \sqrt{3} }{2x}  \\  \\   \bf =  >  \frac{ \sqrt{x} }{ \sqrt{3} }  -   \frac{ \sqrt{3} }{2x}  \\  \\

 \bf =  >  \dfrac{( \sqrt{x}  \times 2x) - ( \sqrt{3} \times  \sqrt{3} ) }{  \sqrt{3}  \times 2x}   \tiny{..taking \: lcm \: as \:  \sqrt{3}  \times 2x}

 \\ \large \bf =  >  \frac{2x \sqrt{x}  - 3}{2x \sqrt{3} } \\

If you want to write in exponential form, you can write -

 \large \bf  \frac{2 {x}^{ \frac{3}{2} }  - 3}{2x {3}^{ \frac{1}{2} } }  \\

Hope it helps.

Be brainly :-)

Similar questions