the term that contains x^4 in the expansion (x÷4-3y)^7 is
Answers
Answer:
7920.
Step-by-step explanation:
1 + 12 x + 66 x^2 + 220 x^3 + 495 x^4 + 792 x^5 + 924 x^6 + 792 x^7 +
495 x^8 + 220 x^9 + 66 x^10 + 12 x^11 + x^12 + 12 y + 132 x y +
660 x^2 y + 1980 x^3 y + 3960 x^4 y + 5544 x^5 y + 5544 x^6 y +
3960 x^7 y + 1980 x^8 y + 660 x^9 y + 132 x^10 y + 12 x^11 y +
66 y^2 + 660 x y^2 + 2970 x^2 y^2 + 7920 x^3 y^2 + 13860 x^4 y^2 +
16632 x^5 y^2 + 13860 x^6 y^2 + 7920 x^7 y^2 + 2970 x^8 y^2 +
660 x^9 y^2 + 66 x^10 y^2 + 220 y^3 + 1980 x y^3 + 7920 x^2 y^3 +
18480 x^3 y^3 + 27720 x^4 y^3 + 27720 x^5 y^3 + 18480 x^6 y^3 +
7920 x^7 y^3 + 1980 x^8 y^3 + 220 x^9 y^3 + 495 y^4 + 3960 x y^4 +
13860 x^2 y^4 + 27720 x^3 y^4 + 34650 x^4 y^4 + 27720 x^5 y^4 +
13860 x^6 y^4 + 3960 x^7 y^4 + 495 x^8 y^4 + 792 y^5 + 5544 x y^5 +
16632 x^2 y^5 + 27720 x^3 y^5 + 27720 x^4 y^5 + 16632 x^5 y^5 +
5544 x^6 y^5 + 792 x^7 y^5 + 924 y^6 + 5544 x y^6 + 13860 x^2 y^6 +
18480 x^3 y^6 + 13860 x^4 y^6 + 5544 x^5 y^6 + 924 x^6 y^6 +
792 y^7 + 3960 x y^7 + 7920 x^2 y^7 + 7920 x^3 y^7 + 3960 x^4 y^7 +
792 x^5 y^7 + 495 y^8 + 1980 x y^8 + 2970 x^2 y^8 + 1980 x^3 y^8 +
495 x^4 y^8 + 220 y^9 + 660 x y^9 + 660 x^2 y^9 + 220 x^3 y^9 +
66 y^10 + 132 x y^10 + 66 x^2 y^10 + 12 y^11 + 12 x y^11 + y^12