Social Sciences, asked by handakanu34, 9 months ago

the the length of a string between a kite and a point on the ground is 93.5m. if the string makes an angle theta with the level ground such that tan theta=15/8, how high is the kite? please explain the s teps...​

Answers

Answered by amitkumar44481
11

AnsWer :

82.5 m.

GiveN :

  • The length of string between a kite and a point on ground is 93.5 m.
  • The value of tanθ = 15 / 8

SolutioN :

Let,

  • The height of kite be 'H' meters = CA.
  • The length of a string between a kite and a point on ground is 93.5 m = BC meters.

Now, We know that.

 \tt \bullet \:  \:  \:  \:  \: Sin\,\theta =  \dfrac{Perpendicular}{Hypotenuse}

 \tt \bullet \:  \:  \:  \:  \: tan\,\theta =  \dfrac{Perpendicular}{Base}  =  \dfrac{15}{8}

\rule{200}3

We need to Find the value of Sinθ

  • So, Let's Apply [ Pythagoras theorem ]

• Mathematics :

 \tt \dagger \:  \:  \:  \:  \: H^2 = P^2 +B^2

• Statement :

  • One sides square of a triangle is equal to the sum of squares of other two sides.

where as,

  • H = ?
  • P = 15.
  • B = 8.

 \tt  : \implies  \: H^2 = P^2 +B^2

 \tt  : \implies  \: H^2 = (15)^2 +(8)^2

 \tt  : \implies  \: H^2 =225+64.

 \tt  : \implies  \: H^2 =289.

 \tt  : \implies  \: H  =  \sqrt{289} .

 \tt  : \implies  \: H  =  \sqrt{17 \times 17} .

 \tt  : \implies  \: H  =17.

Now,

Other Method :

  • We know that, 1 + tanθ = Secθ.

 \tt \dagger \:  \:  \:  \:  \:   1 +tan ^2\,\theta =  Sec^2\,\theta.

 \tt  : \implies 1 + \Bigg\lgroup \dfrac{15}{8}  \Bigg\rgroup^2 =  Sec^2\,\theta.

 \tt  : \implies 1 + \Bigg\lgroup \dfrac{225}{64}\Bigg\rgroup =  Sec^2\,\theta.

 \tt  : \implies  \Bigg\lgroup \dfrac{64 + 225}{64}  \Bigg\rgroup=  Sec^2\,\theta.

 \tt  : \implies  \Bigg\lgroup \dfrac{289}{64}\Bigg\rgroup =  Sec^2\,\theta.

 \tt  : \implies  Sec^2\,\theta =  \dfrac{289}{64}

 \tt  : \implies  Sec\,\theta =   \sqrt{ \dfrac{289}{64} }

 \tt  : \implies  Sec\,\theta =    \dfrac{17}{8}

\rule{200}3

Compare :

 \tt \bullet \:  \:  \:  \:  \: Sec\,\theta =  \dfrac{hypotenuse}{Base} =  \dfrac{17}{8}

 \tt \bullet \:  \:  \:  \:  \: tan\,\theta =  \dfrac{Perpendicular}{Base}  =  \dfrac{15}{8}

Now,

  • We have all value :
  • H = 17.
  • B = 8.
  • P = 15.

\rule{200}3

Diagram :

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\put(15,-15){\line(0,0){25}}\put(-3.8,-15){\line(3,4){18.8}}\put(-3.8,-15){\line(5,0){18.8}}\qbezier(-2,-12.5)(0,-12.7)(0,-15)\put(12,-12){\line(1,0){3}}\put(12,-15){\line(0,1){3}}\put(1,-13){$\tt{\theta}$}\put(14,-18){$\tt{A}$}\put(14,11){$\tt{C}$}\put(-6,-18){$\tt{B}$}\end{picture}

Let move to Question.

 \tt  : \implies Sin\,\theta =  \dfrac{Perpendicular}{Hypotenuse}

  • But, According to Question, we are let Perpendicular be H i.e height of kite from point on ground.
  • similarly, Hypotenuse be length between a kite and ground is 93.5 m = BC m.

 \tt  : \implies Sin\,\theta =  \dfrac{CA}{BC}

 \tt  : \implies Sin\,\theta =  \dfrac{H}{93.5}

 \tt  : \implies  \dfrac{15}{17}  =  \dfrac{H}{93.5}

 \tt  : \implies  H=\dfrac{15 \times 93.5}{17}

 \tt  : \implies  H=82.5 \: m.

Therefore, the Height of kite from point on ground be 82.5 m.


mddilshad11ab: Wonderful explaination ✔️ bhai
amitkumar44481: Thanks :-)
Answered by Anonymous
2

Explanation:

AnsWer :

82.5 m.

GiveN :

The length of string between a kite and a point on ground is 93.5 m.

The value of tanθ = 15 / 8

SolutioN :

Let,

The height of kite be 'H' meters = CA.

The length of a string between a kite and a point on ground is 93.5 m = BC meters.

Now, We know that.

Similar questions