Physics, asked by bvsudhakar5715, 2 months ago

The the velocity versus time graph of a particle executing SHM is shown below the maximum acceleration of particle is

Answers

Answered by nirman95
1

Given:

Velocity versus time graph of a particle executing SHM is shown.

To find:

Max acceleration?

Calculation:

From the graph, we can say :

 \rm \: v = 2 \cos( \omega t)

Now, integrating:

 \rm \implies \:  \dfrac{dx}{dt}  = 2 \cos( \omega t)

 \rm \implies \:  dx  = 2 \cos( \omega t)  \: dt

 \rm \implies \:  \displaystyle\int   \rm dx  = 2  \int\cos( \omega t)  \: dt

 \rm \implies \:  x = \dfrac{2}{ \omega}  \sin( \omega t)

  • So, amplitude is \dfrac{2}{\omega}.

Now, max acceleration:

  \rm \: a_{max} =  { \omega}^{2}A

  \rm \implies \: a_{max} =  { \omega}^{2} \times  \dfrac{2}{ \omega}

  \rm \implies \: a_{max} =  2\omega

  \rm \implies \: a_{max} =  2 \times  \dfrac{2\pi}{T}

  • From graph, time period is 2π.

  \rm \implies \: a_{max} =  2 \times  \dfrac{2\pi}{2\pi}

  \rm \implies \: a_{max} =  2  \: m {s}^{ - 2}

So, max acceleration is 2 m/.

Attachments:
Similar questions