The thickness of a hollow metallic cylinder is 2 cm. It is 35 cm long and its inner
radius is 12 cm. Find the volume of metal required to make the cylinder, assuming
it is open, at either end.
Answers
Answer:
outer radius = inner radius + thickness
outer radius = inner radius + thickness= 12 + 2 = 14 cm
outer radius = inner radius + thickness= 12 + 2 = 14 cmrequired volume = whole cylinder volume - inner volume
outer radius = inner radius + thickness= 12 + 2 = 14 cmrequired volume = whole cylinder volume - inner volume= (pie) R^2 h - (pie) r^2 h
outer radius = inner radius + thickness= 12 + 2 = 14 cmrequired volume = whole cylinder volume - inner volume= (pie) R^2 h - (pie) r^2 h= pie * (R^2 - r^2) * h
outer radius = inner radius + thickness= 12 + 2 = 14 cmrequired volume = whole cylinder volume - inner volume= (pie) R^2 h - (pie) r^2 h= pie * (R^2 - r^2) * h= 22/7 (14^2 - 12^2) * 35
outer radius = inner radius + thickness= 12 + 2 = 14 cmrequired volume = whole cylinder volume - inner volume= (pie) R^2 h - (pie) r^2 h= pie * (R^2 - r^2) * h= 22/7 (14^2 - 12^2) * 35= 110 (196 - 144)
outer radius = inner radius + thickness= 12 + 2 = 14 cmrequired volume = whole cylinder volume - inner volume= (pie) R^2 h - (pie) r^2 h= pie * (R^2 - r^2) * h= 22/7 (14^2 - 12^2) * 35= 110 (196 - 144)= 110*52
outer radius = inner radius + thickness= 12 + 2 = 14 cmrequired volume = whole cylinder volume - inner volume= (pie) R^2 h - (pie) r^2 h= pie * (R^2 - r^2) * h= 22/7 (14^2 - 12^2) * 35= 110 (196 - 144)= 110*52= 5720 cm^3
Answer:
5720 cm^25720cm
2
Step-by-step explanation:
Inner radius of cylinder r = 12 cm
Thickness = 2 cm
Outer radius R = 12+2 = 14 cm
Height = 35 cm
It is a hollow cylinder
Volume of metal required to make cylinder = Outer volume - Inner volume
=\pi R^2 h - \pi r^2 hπR
2
h−πr
2
h
=\frac{22}{7} \times 35 \times (14^2-12^2)
7
22
×35×(14
2
−12
2
)
=5720 cm^25720cm
2
Hence the volume of metal required to make the cylinder, assuming it is open,at either end. is 5720 cm^25720cm
2