Math, asked by rohan4568, 1 year ago

the thickness of a hollow metallic cylinder is 2 cm It is 35 cm long and its inner radius is 12 cm find the volume of metal required to make the cylinder it is open at either end

Attachments:

Answers

Answered by ADgagare
1
Volume of metal required is
π(r1-r2)^2 ×h
3.14 × 4 × 35
439.6 cucm
Answered by Battleangel
12

hello dear

Answer:

 \huge \bold{5720 {cm}^{3} }

Step-by-step explanation:

  \blue{ \sf{ \underline{ \pink{ \underline{ \purple{given}}}}}}

thickness of hollow cylinder is 2 cm

length=35cm

Inner radius=12cm

outer radius=12+2=14cm

 \huge \orange{ \fbox{ \fbox{ \red{ \mathfrak{solution}}}}}

volume volume of wood required to make the cylinder = volume of whole cylinder - volume of hollow cylinder.

 \pi \times  {r}^{2}  \times h -  \pi \times  {r}^{2} \times h

 =    \:  \: \pi( {r}^{2}  -  {r}^{2} )h

 =  \frac{22}{7} ( {14}^{2}  -  {12}^{2} )35

 =  \frac{22}{7} (196 - 144)35

 =  \frac{22}{ \cancel7}  \times 52 \times  \cancel35

 = 22 \times 52 \times 5

 = 5720 {cm}^{3}

 \bf{hope \: this \: helps \: you }

Similar questions