Math, asked by yashasbysani2005, 3 months ago

The third term of an arithmetic progression is 8 and its ninth term exceeds three
times the third term by 2 find the sum of the first 19 terms.​

Answers

Answered by ravi2303kumar
45

Answer:

551

Step-by-step explanation:

given, 3rd term of AP = 8

also, given that 9th term =  3(8) + 2

=> 9th term = 24+2 = 26

so, 3rd term = a + 2d = 8

    9th term =  a + 8d = 26  

                            -6d = -18

=> d = 18/6 = 3

we have a+2d = 8

=> a+ 2(3) = 8

=> a = 8-6

=> a = 2

so, sum up to 19terms = \frac{n}{2}[2a+(n-1)d]

                                     = \frac{19}{2}[2(2)+(19-1)3]

                                     = \frac{19}{2}[4+(18)3]

                                     = \frac{19}{2}[4+54] = \frac{19}{2}*58

                                     = 19*29

                                     = 551

Similar questions