Math, asked by abbbcb007, 9 months ago

the third term of G.P. is 3/4 and the sum of the first five terms is 32/33 times the sum of the first ten terms.Find the sum of the first four terms.​

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\textsf{In a G.P}

\mathsf{t_3=\dfrac{3}{4}\;\&\;S_5=\dfrac{32}{33}\;S_{10}}

\underline{\textsf{To find:}}

\mathsf{S_4}

\underline{\textsf{Solution:}}

\underrline{\mathsf{Concept\;used:}}

\mathsf{The\;n\,th\;term\;of\;the\;G.P\;a,ar,ar^2.............\;is}

\boxed{\mathsf{t_n=ar^{n-1}}}

\mathsf{t_3=\dfrac{3}{4}}

\implies\mathsf{ar^2=\dfrac{3}{4}}........(1)

\mathsf{S_5=\dfrac{32}{33}\;S_{10}}

\implies\mathsf{\dfrac{a(r^5-1)}{r-1}=\dfrac{32}{33}{\times}\dfrac{a(r^{10}-1)}{r-1}}

\implies\mathsf{r^5-1=\dfrac{32}{33}{\times}((r^5)^2-1^2)}

\implies\mathsf{r^5-1=\dfrac{32}{33}{\times}(r^5-1)(r^5+1)}

\implies\mathsf{1=\dfrac{32}{33}{\times}(r^5+1)}

\implies\mathsf{\dfrac{33}{32}=r^5+1}

\implies\mathsf{\dfrac{33}{32}-1=r^5}

\implies\mathsf{\dfrac{1}{32}=r^5}

\implies\boxed{\mathsf{r=\dfrac{1}{2}}}

\mathsf{From\;(1)}

\mathsf{a\left(\dfrac{1}{4}\right)=\dfrac{3}{4}}

\implies\boxed{\mathsf{a=3}}

\textsf{Sum of first four terms}

\mathsf{S_n=\dfrac{a(r^n-1)}{r-1}}

\mathsf{S_4=\dfrac{a(r^4-1)}{r-1}}

\mathsf{S_4=\dfrac{3\left((\dfrac{1}{2})^4-1\right)}{\dfrac{1}{2}-1}}

\mathsf{S_4=\dfrac{3\left(\dfrac{1}{16}-1\right)}{\dfrac{-1}{2}}}

\mathsf{S_4=\dfrac{3\left(\dfrac{-15}{16}\right)}{\dfrac{-1}{2}}}

\mathsf{S_4=3\left(\dfrac{15}{8}\right)}

\therefore\boxed{\mathsf{S_4=\dfrac{45}{8}}}

\underrline{\textsf{Find more:}}

The 3rd term of a GP is 2/3 and 6th term is 2/81 then the 1st term is

https://brainly.in/question/12927296

Similar questions