Math, asked by saloni9026, 1 year ago

the third vertex of an equilateral triangle whose other two vertices are (1,1) and (-1,-1) respectively, is :

Answers

Answered by Anonymous
12
hey mate
here's the solution....
Attachments:
Answered by amirgraveiens
7

Hence the third vertex of an equilateral triangle is (√31,√-31).

Step-by-step explanation:

GIVEN:

Let tquilateral triangle ABC, A(x,y),   B(1,1), C(-1,-1)

To find: Co-ordinates of A, x & y

By distance formula, we calculate AB, BC & AC. Then we equate them to get x & y.

Distance between 2 points

\sqrt{( x_1-x_2)^2 + ( y_1-y_2)^2}   where(x_1, y_1) &( x_2,y_2) are coordinates of 2 given points

So, in the given triangle ABC,

BC=\sqrt{(1-(-1))^2+(1-(-1))^2}

BC=\sqrt{(2)^2+(2)^2}

BC=\sqrt{8}                                [1]

AB=\sqrt{(x-1)^2+(y-1)^2}          

AB=\sqrt{(x^2-2x+1+y^2-2y+1}

AB=\sqrt{x^2+y^2-2x-2y+2}        [2]

AC=\sqrt{(x-(-1))^2+(y-(-1))^2}

AC=\sqrt{(x+1)^2+(y+1)^2}

AC=\sqrt{x^2+2x+1+y^2+2y+1}

AC=\sqrt{x^2+y^2+2x+2y+2}         [3]

Let's equate (1) & (3) AC = BC

AC^2 =BC^2

(\sqrt{x^2+y^2+2x+2y+2})^2=(\sqrt{8})^2  

x^2+y^2+2x+2y+2=(8)^2

x^2+y^2+2x+2y+2=64

x^2+y^2+2x+2y=64-2

x^2+y^2+2x+2y=62                          [4]

Now, we equate(2) & (3) AB = AC

AB^2 = AC^2

(\sqrt{x^2+y^2-2x-2y+2})^2=(\sqrt{x^2+y^2+2x+2y+2})^2

x^2+y^2-2x-2y+2=x^2+y^2+2x+2y+2

x^2+y^2-2x-2y+2=x^2+y^2+2x+2y+2

-2y-2y=2x+2x

-4y=4x

y=-x                                                                   [5]

Now, put the value of y in equation (4) , we get,

x^2+y^2+2x+2y=62  

x^2+(-x)^2+2x+2(-x)=62

x^2+x^2+2x-2x=62  

2x^2=62

x^2=31

x=\sqrt{31}

Now, get y by eq (5)

y=-x

y=-(\sqrt{31} )

y=-\sqrt{31}

Hence the third vertex of an equilateral triangle is (\sqrt{31},-\sqrt{31}).

 

Similar questions