Math, asked by devil7184, 1 year ago

The three faces A,B,C having a common vertex of a cubiod have areas 450cmsq ,600cmsq and 300cmsq respectively.Find the volume of cuboid.​

Answers

Answered by Anonymous
3

Answer:

Step-by-step explanation:

L×B = 600

B = 600/L

B×H = 300

H = L/2

L×H = 450

L = 30

B = 20

H = 15

VOLUME = 9000

Answered by stefangonzalez246
2

Volume of cuboid is 9000 cm^{2}.

Given

There are 3 faces A, B, C, having a common vertex of a cuboid.

Having areas : 450 cm^{2}, 600 cm^{2}, 300 cm^{2}.

                        l × b = 450 cm^{2}

                        l × h = 600 cm^{2}

                        b × h = 300 cm^{2}

Formula :

              Volume of cuboid = length × breadth × height

                                length  = l × b

                                breadth = l × h

                                height   = b × h

                                              = ( l × b ) × ( l × h ) × ( b × h )

                                              = l^{2} × b^{2} × h^{2}

Take square root,                 = \sqrt{l*b*h}      

                                              = \sqrt{450*600*300}

                                              = \sqrt{81000000}

                                              = 9000 cm^{2}.

To learn more...

brainly.in/question/14530554.      

                               

Similar questions