Math, asked by pappugenius727, 2 days ago

The three sides of a triangle are 2 K units, (k + 2) units and (3k - 2) units, respectively. Its area is 2 k root 15 sq units. What is the value of k ? ​

Answers

Answered by mithu456
0

Answer:

We know that the formula of a triangle =

 \sqrt{s(s - a)(s - b)(s - c)}

FIND the value of the s=

 \frac{2k + k + 2 + 3k - 2}{ 3}

s = 2k

area =  \sqrt{2k(2k - 2k)(2k - 2 - k)(2k - 3k + 2)}

Area=0

2k \sqrt{15}  = 0 \\ k = 0

So final answer is k = 0.

Similar questions