Math, asked by Anonymous, 4 months ago

The three sides of a triangle is 30cm, 40cm and 50cm, find the height of the triangle corresponding to longest side.​

Answers

Answered by Anonymous
30

Given :-

Here , Three sides of triangle are given 30cm , 40cm and 50 cm

Solution :-

Let the sides of the triangle be a , b and c

Here , a = 30cm , b = 40cm and c = 50cm

Therefore ,

S = a + b + c /2

S = 30 + 40 + 50 / 2

S = 120/2

S = 60

Now , By using Heron's Formula ,

 \sqrt{s \: ( \:s \:  -  \: a)(s \:  - b)(s \:  - c) }  \\

Put the required values ,

 \sqrt{60 ( 60  - 30) \: ( 60 - 40)( 60  -  50)}  \\  \sqrt{60 \times 30 \times 20 \times 10 }   \\  \sqrt{2 \times 5 \times 3 \times 2\times 2 \times 5 \times 3 \times 2  \times 5 \times 2 \times 2 \times 5  }  \\  2 \times 2 \times 2 \times 3 \times 5 \times 5 \\ 600 {cm}^{2}

Here , Area of triangle

= 1/2 * base * height

600 = 1/2 * 50 * h

600 * 2 = 50 * h

1200 /50 = h

h = 24cm

Hence , The height of triangle corresponding to longest side = 24cm

Answered by sara122
13

Answer:

\huge\fbox{Diagram}

  • Diagram has been created by me , see in the above attachment

 \\  \\  \\

\huge\fbox{Concept}

  • As given the sides (30 ,40 ,50 )cm. We have to find the height. So first of all we will used the formula
  •  \large \rm \bold \red {s =  \frac{a + b + c}{2} }to find the (s) .Then we will used the heron's formula  \large \bf \red{ area \: of \: the \: traingle =   \sqrt{s(s} - a)(s - b)(s - c)} then we will used the formula 1/2× base× height . By this we will get the height.

 \\  \\  \\

\huge\fbox{Given}

As you can understand it is an scalene traingle so

  • a = 30 cm
  • b = 40 cm
  • c = 50 cm

 \\  \\  \\

\huge\fbox{To \:find}

  • The height

 \\  \\  \\

\huge\fbox{Solution}

Let ,

  • a = 30 cm
  • b = 40 cm
  • c = 50 cm

 \\  \\

 \therefore \bf s =  \frac{a + b + c}{2}  \\  \\ \bf s =  \frac{30 + 40 + 50}{2}  \\  \\  \bf s =   \cancel\frac{120}{2}  \\  \ \\  \bf \: s = 60 \: cm \\  \\

Now ,

  • s - a = 60 - 30 = 30
  • s - b = 60 - 40 = 20
  • s - c = 60 - 50 = 10

 \\  \\

you can put the values directly instead of putting 60- 30 but I will give by long method .

 \large \bf \red{ area \: of \: the \: traingle =   \sqrt{s(s} - a)(s - b)(s - c)}

Put the values:-

\begin{gathered} \sqrt{60 ( 60 - 30) \: ( 60 - 40)( 60 - 50)} \\ \sqrt{60 \times 30 \times 20 \times 10 } \\ \sqrt{2 \times 5 \times 3 \times 2\times 2 \times 5 \times 3 \times 2 \times 5 \times 2 \times 2 \times 5 } \\ 2 \times 2 \times 2 \times 3 \times 5 \times 5 \\ 600 {cm}^{2} \end{gathered}

Here , Area of triangle

= 1/2 × base × height

600 = 1/2 × 50 × h

600 × 2 = 50 h

1200 /50 = h

h = 24cm

Attachments:
Similar questions