English, asked by sebyrajput67, 6 months ago

The three vertexes of a parallelogram ABCD are a(3,-4) b(-1,-3) and c(-6,2).find thrle coordinates of vertex D and find the area of parallelogram​

Answers

Answered by sakhraniajit
0

Answer:

Given A(3,−4),B(−1,−3),C(−6,2)

O is M.P of AC=(

2

3−6

,

2

−4+2

)=(−

2

3

,−1)

∴ O=(−

2

3

,−1)

Similarly, O is MP of BD

2

−3

=

2

−1+a

, −1=

2

−3+6

∴ a=−2,b=+1

∴ D=(−2,1)

∴ Area of parallelogram ABCD = Ar of △ABC + Ar △ADC

Area of △ABC=

2

1

[x

1

(y

2

−y

3

)+x

2

(y

3

−y

1

)+x

3

(y

1

−y

2

)]

=

2

1

[3(−3−2)−1(2+4)−6(4+3)]

=

2

1

[−15−6+6]=

2

∣15∣

=

2

15

Area of △ADC=

2

1

[3(1−2)−2(2+4)−6(−4−1)]

=

2

1

[−3−12+30]=

2

15

∴ Area of parallelogram ABCD=

2

15

+

2

15

=15

Similar questions