Chemistry, asked by shrutiprusty, 8 months ago

the threshold frequency of a metal is 1.11×10^16 hz.what is the maximum kinetic energy of the photo electron produced by applying a light of 15 A on the metal ?​

Answers

Answered by Mysterioushine
40

QUESTION :-

If threshold frequency of a metal is 1.11 × 10⁻⁶ Hz Then the maximum kinetic energy of photo electrons produced by a light of wavelength 15 A⁰ on the metal is

GIVEN :-

  • Threshold frequency of a metal = 1.11 × 10⁶Hz

  • Wavelength of light = 15A⁰

TO FIND :-

  • Maximum Kinetic energy of the photo electron

SOLUTION :-

 \large  \underline{\bold {\boxed{ \bigstar{ \green{ \sf \: { {\upsilon}_{0} =  \frac{c}{ {\lambda}_{0}} }}}}}}

Where ,

  • υₒ is threshold frequency
  • λₒ is threshold wavelength
  • c is velocity of light

We have ,

  • υ₀ = 1.11 × 10⁶ s⁻¹
  • c = 3 × 10⁻⁸ m/s

 \implies \sf \: 1.11 \times  {10}^{6} \:   \cancel{{s}^{ - 1}}   =  \frac{3 \times  {10}^{8} \: m \cancel{ {s}^{ - 1} } }{{\lambda}_0 }  \\  \\  \implies \sf \: (1.11 \times  {10}^{6} )({\lambda}_0) =  3 \times  {10}^{8} m \\  \\  \implies \sf \: {\lambda}_0 =  \frac{3 \times  {10}^{8} \:  m}{1.11 \times  {10}^{6} }   \\  \\  \implies {\underline{ \boxed{ \blue {\sf{{\lambda}_0 = 270 \: m}}}}}

 \large {\underline {\boxed{ \bigstar{ \green{ \sf{ \: 1Hz = s {}^{ - 1} }}}}}}

 \large  \underline{\bold {\boxed{ \bigstar{ \green{ \sf \: { 1A {}^{0}   =  {10}^{ - 10} m}}}}}}

Relation between KE , λ , h , c and λ₀ is given by ,

 \large  \underline{\bold {\boxed{ \bigstar{ \green{ \sf \: {KE = hc \bigg( \frac{1}{ \lambda}  -  \frac{1}{{ \lambda}_0}    \bigg)}}}}}}

Where,

  • h is planck's constant
  • c is velocity of light
  • λ is wavelength
  • λ₀ is threshold wavelength

We have,

  • h = 6.625 × 10⁻³⁴ J.sec
  • c = 3 × 10⁸ m/s
  • λ = 15 × 10⁻¹⁰ m
  • λ₀ = 270 m

 \implies \sf \: KE = 6.625 \times 10 {}^{ - 34}  \times 3 \times 10 {}^{8}  \bigg( \frac{1}{15 \times 10 {}^{ - 10} }  -  \frac{1}{270}  \bigg) \\  \\  \implies \sf \: KE = 19.875 \times 10 {}^{ - 28}  \bigg( \frac{10 {}^{ 10}  }{15}  -  \frac{1}{270}  \bigg) \\  \\  \implies \sf \: KE = 19.875 \times  {10}^{ - 28}  \bigg(  \frac{18 \times  {10}^{10} - 1 }{270}   \bigg) \\  \\  \implies \sf \: KE = 19.875  \times  {10}^{ - 28}  \bigg( \frac{1.79 \times 10 {}^{ 11}  }{270}  \bigg) \\  \\  \implies \sf \: KE =  \bigg( \frac{19.875 \times 1.79 \times 10 {}^{ - 17} }{270}  \bigg) \\  \\  \implies \sf \: KE =  \bigg( \frac{35.5 \times 10 {}^{ - 17} }{270}  \bigg) \\  \\  \implies  {\underline {\boxed {\blue{\sf {\: KE = 0.13 \times  {10}^{ - 17}\:J}}}}}

∴ The Kinetic energy of the photoelectrons is 0.13 × 10⁻¹⁷ J


MisterIncredible: Awesome ! (◔‿◔)
Answered by RishabhOMG
4

Answer:

The answer is given below

MARK ME BRAINLIEST

Attachments:
Similar questions