Physics, asked by srupa6507, 2 months ago

The time for which a sound wave stays in the human ear​

Answers

Answered by peehuthakur
0

Answer:

The mechanical vibrations of the stapes footplate at the oval window creates pressure waves in the perilymph of the scala vestibuli of the cochlea. These waves move around the tip of the cochlea through the helicotrema into the scala tympani and dissipate as they hit the round window. The wave motion is transmitted to the endolymph inside the cochlear duct. As a result the basilar membrane vibrates, which causes the organ of Corti to move against the tectoral membrane, stimulating generation of nerve impulses to the brain.

The vibrations of the stapes footplate against the oval window do not affect the semicircular canals or the utricle of the vestibular system unless middle-ear disease has eroded the bony wall of the lateral canal and produced an abnormal opening. In such a case loud sounds may cause transient vertigo (the Tullio phenomenon). However, laboratory evidence suggests that the saccule of mammals may retain some degree of responsiveness to intense sound, an intriguing observation because the saccule is the organ of hearing in fish, the distant ancestors of mammals. Normally only the cochlear fluids and the cochlear duct vibrate in response to alternating pressures at the oval window, because only the cochlea has the round window as a “relief valve.”

Within the cochlea the different frequencies of complex sounds are sorted out, or analyzed, and the physical energy of these sound vibrations is converted, or transduced, into electrical impulses that are transmitted to the brainstem by the cochlear nerve. The cochlea analyzes sound frequencies (distinguishes pitch) by means of the basilar membrane, which exhibits different degrees of stiffness, or resonance, along its length.

Explanation:

mark me as a brainliest

Similar questions