The time period of a earth sattelite in circular orbit orbit is idepedent of
Answers
The time period of an earth satellite in circular orbit is independent of ?
the correct answer is at the mass of the sattelite As we learnt in
For a satellite , Centripetal force = Gravitational force
\therefore \; \; mR\omega ^{2}=\frac{GmM_{e}}{R^{2}}\; \; \; \; \; \; where\; R=r_{e}+h
or\; \; \; \omega =\sqrt{\frac{GM_{e}}{R^{3}}}=\sqrt{\frac{GM_{e}}{(r_{e}+h)^{3}}}
\therefore \; \; \; T=\frac{2\pi }{\omega }=2\pi \sqrt{\frac{(r_{e}+h)^{3}}{GM_{e}}}
\therefore \; \; T\; is \; independent \; of \; mass\; (m)\; of\; satellite.
mw^2R = \frac{G_{e}m}{R^3} = \sqrt{\frac{Gm_{e}}{\left ( re+h \right )^3}}mw^2R = \frac{G_{e}m}{R^3} where R = R_{r} h
w = \sqrt{\frac{Gm_{e}}{r^3}} = \sqrt{\frac{Gm_{e}}{\left ( re+h \right )^3}}
T = \frac{2_{x}}{w} = 2\times \frac{\sqrt{\left ( r_{e} +h \right )}}{Gm_{e}}
therefore T is independent of mass of Satelite