The time period of a single pendulum t depends on length of the pendulum l and acceleration due to gravity g. derive the formula for t
Answers
Answered by
1
Let Time period =T
Mass of the bob = m
Acceleration due to gravity = g
Length of string = L
Let TαmagbLcT \alpha m ^{a}g ^{b}L ^{c}TαmagbLc
[T]α[m]a[g]b[L]c[T] \alpha [m] ^{a}[g] ^{b}[L] ^{c}[T]α[m]a[g]b[L]c
M0L0T1=MaLbT−2bLcM^{0}L^{0}T^{1}=M^{a}L^{b}T^{-2b}L^{c}M0L0T1=MaLbT−2bLc
M0L0T1=MaLb+cT−2bM^{0}L^{0}T^{1}=M^{a}L^{b+c}T^{-2b}M0L0T1=MaLb+cT−2b
⇒a=0 ⇒ Time period of oscillation is independent of mass of the bob
-2b=1
⇒b=-12\frac{1}{2}21
b+c = 0
-12\frac{1}{2}21 + c =0
c=12\frac{1}{2}21
Giving values to a,b and c in first equation
Tαm0g−12L12T \alpha m ^{0}g ^{- \frac{1}{2} }L ^{ \frac{1}{2} }Tαm0g−21L21
TαLgT \alpha \sqrt{ \frac{L}{g} }TαgL
The real expression for Time period is
T=2πLgT =2 \pi \sqrt{ \frac{L}{g} }T=2πgL
Therefore time period of oscillation depends only on gravity and length of the string.
Not on mass of the bob.
Mass of the bob = m
Acceleration due to gravity = g
Length of string = L
Let TαmagbLcT \alpha m ^{a}g ^{b}L ^{c}TαmagbLc
[T]α[m]a[g]b[L]c[T] \alpha [m] ^{a}[g] ^{b}[L] ^{c}[T]α[m]a[g]b[L]c
M0L0T1=MaLbT−2bLcM^{0}L^{0}T^{1}=M^{a}L^{b}T^{-2b}L^{c}M0L0T1=MaLbT−2bLc
M0L0T1=MaLb+cT−2bM^{0}L^{0}T^{1}=M^{a}L^{b+c}T^{-2b}M0L0T1=MaLb+cT−2b
⇒a=0 ⇒ Time period of oscillation is independent of mass of the bob
-2b=1
⇒b=-12\frac{1}{2}21
b+c = 0
-12\frac{1}{2}21 + c =0
c=12\frac{1}{2}21
Giving values to a,b and c in first equation
Tαm0g−12L12T \alpha m ^{0}g ^{- \frac{1}{2} }L ^{ \frac{1}{2} }Tαm0g−21L21
TαLgT \alpha \sqrt{ \frac{L}{g} }TαgL
The real expression for Time period is
T=2πLgT =2 \pi \sqrt{ \frac{L}{g} }T=2πgL
Therefore time period of oscillation depends only on gravity and length of the string.
Not on mass of the bob.
Similar questions
Math,
7 months ago
Math,
7 months ago
Art,
7 months ago
Political Science,
1 year ago
Social Sciences,
1 year ago
Science,
1 year ago