Physics, asked by vedantashinde2003, 11 months ago

The time period of oscillation depends upon mass of pendulum length of pendulum and acceleration due to gravity derived the relation between them?






Answers

Answered by Anonymous
14

Answer:-

 \mathsf{T = 2 \pi \sqrt{\dfrac{l}{g}}}

Given :-

\mathsf{ T \propto m lg}

m = mass

l = length

g = acceleration due to gravity.

\mathsf{ T \propto m^a l^b g^c}

\mathsf{ T = K m^a l^b g^c }

  • Dimension formula of mass is M.
  • Dimension formula of length is L.
  • Dimension formula of gravity is  LT^{-2}

 \mathsf{T = K [M]^a [L]^b [LT^{-2}]^c}

 \mathsf{T = K M^a L^b L^c T^{-2c}}

 \mathsf{M^0L^0T = K M^a L^{b+c}T^{-2c}}

  • On comparing with L. H. S

 \mathsf{M^0 = M^a }

 \mathsf{a = 0}

 \mathsf{L^0 = L^{b+c}}

 \mathsf{0 = b + c}

\mathsf{ b = -c}

 \mathsf{T = T^{-2c}}

 \mathsf{1 = -2c}

\mathsf{ c = \dfrac{-1}{2}}

also,

\mathsf{ b = -c }

  • put the value of c.

 \mathsf{b =  \dfrac{-(-1)}{2}}

 \mathsf{b = \dfrac{1}{2}}

Now,

  • put the value of a, b and c.

\mathsf{ T = K m^0 l^{\frac{1}{2}}g^{\frac{-1}{2}}}

 \mathsf{T = K \sqrt{\dfrac{l}{g}}}

  • where k is the constant of proportionality whose value is 2π.

 \mathsf{T = 2 \pi \sqrt{\dfrac{l}{g}}}

hence,

The relation between them is \mathsf{ T = 2 \pi \sqrt{\dfrac{l}{g}}}.

Similar questions