Physics, asked by rahulverma39, 1 year ago

The time period. of simple pendulam it is depands on lenght of the thread (l) and gravitational acceration (g). Find the relation between them.​

Answers

Answered by Anonymous
75

Solution:

Given relation:

\sf{T \propto (l)^{x}\;\;(g)^{y}\;\;\;\;..........(1)}

\sf{T= k(l)^{x}\;\;(g)^{y}\;\;\;\;..........(2)}

Where,

T = time

l = length of the thread

g = gravitational acceleration

k = constant

Putting the following dimensions in equation (2), we get

\sf{[M^{0}L^{0}T_{1}]=k[M^{0}L^{1}T_{0}]^{x}\;[M^{0}L^{1}T^{-2}]^{y}\;\;\;\;.........(3)}

Now we compair the following values,

'M'\;\;\;\;0 = 0+0\;\;\;\;......(4)\\ \\ 'L'\;\;\;\;0 = x+y\;\;\;\;.......(5)\\ \\ 'T'\;\;\;\;1 = 0-2y\;\;\;\;.......(6)

From eq (6)

\sf{\implies 1 = -2y}

\sf{\implies y =-\dfrac{1}{2}\;\;\;\;......(7)}

put the value of y in eq (5), we get

\sf{\implies x+\bigg(-\dfrac{1}{2}\bigg)=0}

\sf{\implies x = \dfrac{1}{2}}

Put the values of x and y in eq (2), we get

\sf{T= k(l)^{x}\;\;(g)^{y}}

T = k(l)^{\frac{1}{2}}\;\;(g)^{-\frac{1}{2}}

{\boxed{\boxed{\sf{\implies T=k\sqrt{\dfrac{l}{g}}}}}}

Similar questions