Physics, asked by vishalkumar15062003, 1 month ago

The time period (T) of a pendulum may depend on mass of the bob (m), effective length of the pendulum (l) and acceleration due to gravity (g). By the principle of dimensional homogeneity, prove that, T2π,√(l/g) where K is a dimensionless constant.hu​

Answers

Answered by Anonymous
142

Topic :- Units and Dimensions

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\maltese\:\underline{\textsf{\textbf{AnsWer :}}}\:\maltese

☢ Let the Time Period (T) depends on mass (M) , length (L) and and Acceleration due to gravity (g).

\footnotesize\longrightarrow \: \sf T\propto [M]^a [L]^b [g]^c\\

Adding k as dimensionaless constant we have :

\footnotesize\longrightarrow \: \sf T = k [M]^a [L]^b [g]^c

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\footnotesize\dag \: \sf{Dimensions  \: of \:  Time  \: Period  \: (T) = [M^0 L^0T ^{1} ]} \\

\footnotesize\dag\:\sf{Dimensions \:  of \:  mass \:  (M) = [M^1 L^0 T^0]} \\

\footnotesize\dag\: \sf Dimensions \:  of \:  length \:  (L) = [M^0L^1T^0]

\footnotesize\dag\: \sf Dimensions \:  of \:  Acceleration  \:  due  \: gravity \:  (g) = [M^0L^1T^{-2}] \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\footnotesize\longrightarrow \: \sf [M^0L^0T^1] = [M^1 L^0 T^0]^a [M^0L^1T^0]^b [M^0L^1 T^{-2}]^c \\

\footnotesize\longrightarrow \: \sf [M^0L^0T^1] = [M]^a[L]^{b+ c} [ T]^{ - 2c }\\

On comparing the powers of LHS and RHS we get:

\footnotesize\dashrightarrow\sf a = 0 \\

\footnotesize\dashrightarrow\sf b  + c= 0 \\

\footnotesize\dashrightarrow\sf b= - c \qquad \: ...(i)

\footnotesize\dashrightarrow\sf -2c= 1 \\

\footnotesize\dashrightarrow\sf c= \dfrac{1}{- 2} \qquad \: ...(ii)\\

Substituting the value of c from eqⁿ (ii) to eqⁿ (i) we get :

\footnotesize\dashrightarrow\sf b = - \bigg(\dfrac{1}{-2} \bigg) \\

\footnotesize\dashrightarrow\sf b = \dfrac{1}{2}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\footnotesize\longrightarrow \: \sf T = k [M]^0 [L]^{ \frac{1}{2} } [g]^{ \frac{1}{ - 2} } \\

\footnotesize\longrightarrow \: \sf T = k [L]^{ \frac{1}{2} } [g]^{ \frac{1}{ - 2}} \\

\footnotesize\longrightarrow \: \sf T = k \dfrac{[L]^{ \frac{1}{2} } }{[g]^{ \frac{1}{2}}} \\

\footnotesize\longrightarrow \: \sf T = k \dfrac{\sqrt{[L] }}{\sqrt{[g]}} \\

\footnotesize\longrightarrow \: \sf T = k \sqrt{ \frac{L}{g} } \\

Experimentally we know that the value of k is 2π, Hence :

\footnotesize\longrightarrow \: \pink{\underline{ \boxed{\gray{\bf T = 2\pi \sqrt{\frac{L}{g}}}}}}\\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Learn More :-

If force (F). velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are[AIPMT-2014](1)...

  • https://brainly.in/question/19901193

time period (T) of oscillation of simple pendulum depends on length T . mass m acceleration due to gravity g deduce the ...

  • https://brainly.in/question/37998935

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}


MystícPhoeníx: Wow !
Anonymous: Thäñk yoú ! ♥️
Similar questions