Math, asked by chimmi8436, 9 months ago

The time taken by a person to cover 150km was 2hr 60min more than the time taken in the return journey. If he returned at a speed of 10km per hour more than the speed while going. Find the speed per hour in each direction

Answers

Answered by abrez2004ota34f
5

Answer:

The time should be 2hr 30mins more, not 2hr 60min. Here the correct answer is below

Step-by-step explanation:

Let the speed be x and time be t1 and t2

So, Speed of departing journey =

x =  \frac{d}{t}  \\ x =  \frac{150}{t + 2.5}  \\ t + 2.5 =  \frac{150}{x} ............ \: i

Now, Speed of return journey =

x =  \frac{d}{t}  \\ x  + 10=  \frac{150}{t}  \\ t =  \frac{150}{x + 10}.............ii \\

Using (ii) in (i), we get,

 \frac{150}{x + 10}  + 2.5 =  \frac{150}{x}  \\  \frac{150}{x}  -  \frac{150}{x + 10}  = 2.5 \\  \frac{150(x + 10)  - 150(x)}{(x)(x + 10)}  = 2.5 \\  \frac{150x  + 1500 - 150x}{ {x}^{2} + 10x }  = 2.5\\ 1500 = 2.5( {x}^{2} + 10x) \\  \frac{1500}{2.5}   =  {x}^{2}  + 10x \\  {x}^{2}  + 10x - 600 = 0 \\ using \: quadratic \: formula \: we \: get \\  {b }^{2}  - 4ac \:  =  {10}^{2}  - 4(1)( - 600) = 100 + 2400 = 2500 = d \\ x =   \frac{ - b +  \sqrt{d} }{2a}  \: or \:  \frac{ - b -  \sqrt{d} }{2a}  \\ x =  \frac{ - (10) +  \sqrt{2500} }{2(1)}  \: or \:  \frac{ - (10) -  \sqrt{2500} }{2(1)}  \\ x =   \frac{ - 10 + 50}{2}  \: or \:  \frac{ - 10  - 50}{2} \\ x =  \frac{40}{2}  \: or \:  \frac{ - 60}{2}  \\ x = 20 \: or \:  - 30 \\ x =  - 30 \: is \: neglected \: because \: speed \: cannot \: be \: negative \\ so \: speed  \: of \: going= 20km |hr \\  \\ speed \: of \: return = x + 10 = 20 + 10 = 30km |hr

Plz Mark It The BRAINLIEST

Similar questions