Math, asked by amirthavarshinims202, 2 months ago

the time taken for rupees 4400 to bkn Rupees 4851 at 10 % compounded half yearly is solve this problem​

no one can solve it
who solves this sum is a born genius

Answers

Answered by TRISHNADEVI
7

CORRECT QUESTION :

 \\

  • ❖ Find the time taken for Rs. 4400 to be Rs. 4851 at 10% interest compounded half yearly.

_________________________________________

REQUIRED FORMULA :

 \\

When interest is compounded half yearly,

 \:  \:  \:  \:  \:  \:  \bigstar \:  \:  \boxed{ \bold{ \:  \: A = P  \: (1 +  \dfrac{ \frac{r}{2} }{100}) {}^{2n} \:  \:  }}

_________________________________________

SOLUTION :

 \\  \\

Given :-

  • Principle, P = Rs. 4400

  • Amount, A = Rs. 4851

  • Rate of Interest, r = 10%

  • Type of Interest = Compounded half yearly

 \\

To Find :-

  • Time taken/No. of years, n = ?

 \\

Calculation :-

 \\

Using the formula,

 \bigstar \:  \:  \sf{A = P  \: (1 +  \dfrac{ \frac{r}{2} }{100}) {}^{2n}} \\  \\  \sf{ \implies \: 4851 = 4400 \: (1 +  \dfrac{ \frac{10}{2} }{100}) {}^{2n}}  \\  \\ \sf{ \implies \: 4851 = 4400 \: (1 +  \dfrac{ 5 }{100}) {}^{2n}}  \\  \\ \sf{ \implies \: \dfrac{4851}{4400}  = (1 +  \dfrac{5}{100} ) {}^{2n}} \:  \:  \:  \:  \:  \:  \:   \\  \\ \sf{ \implies \: \dfrac{441}{400}  =  \lbrack \: \dfrac{(100 + 5)}{100} \rbrack \: {}^{2n}}  \:  \:  \:  \:  \:  \\  \\ \sf{ \implies \: \dfrac{441}{400}  = ( \dfrac{105}{100}) {}^{2n}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{ \implies \: ( \dfrac{105}{100}) {}^{2n}  = \dfrac{441}{400}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \sf{ \implies \: (\dfrac{21}{20} ) {}^{2n}  =  \dfrac{(21) {}^{2} }{(20) {}^{2}}}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{ \implies \: (\dfrac{21}{20} ) {}^{2n} =  (\dfrac{21}{20} ) {}^{2}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf{ \implies \: 2n = 2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf{ \implies \: n =  \frac{2}{2}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \sf{ \large{\therefore \:  \: \underline{ \:  n = 1 \: }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • ➲ Hence, the time taken/ number of years, n = 1 year.

_________________________________________

ANSWER :

 \\

  • ❖ The time taken for Rs. 4400 to be Rs. 4851 at 10% interest compounded half yearly is 1 year.

Answered by monishabalaji510
0

Answer:

Step-by-step explanation:

1 year

Similar questions