Math, asked by ItzFadedGuy, 2 months ago

The tops of two towers of height x and y, standing on level ground, subtend angles of 30° and 60° respectively at the center of the line joining their feet, then find the ratio of x and y.
→(Please explain this question with the help of diagram)
→Thank you for answering my question!
→No Spam!!!!

Answers

Answered by TheBrainlyStar00001
17

Given :

 \\

  • The tops of two towers of height x and y, standing on level ground, subtend angles of 30° and 60° respectively at the center of the line joining their feet.

 \\

To Find :

 \\

  • The ratio of x and y.

 \\

Required Solution :

 \\

❍ Kindly, see the attachment .

 \\

Let, x and y be AB and CD, respectively.

 \\

Let, the centre of the line joining of the feet of the two towers ( BD ) be E.

 \\  \qquad \qquad  {\underbrace{ \sf{❍ \:\:In  \:  \Delta}\bf  \: ABE \: \bf,}}  \\\\

 \bf{✧\:\:Here, }\:   \sf\frac{AB}{BE} \:  ➠   \:  \bf \tan30  {}^{  \small\circ} . \\

 :  \implies \sf \frac{x}{BE}    \: ➠ \:  \frac{1}{ \sqrt{3} }  \\\\\ :  \implies \sf BE \: ➠ \:  \sqrt{3x} \:  \:   \cdots \cdot \bf(1) \\\\

   \qquad \qquad  {\underbrace{ \sf{❍ \:\:In  \:  \Delta}\bf  \: CDE \: \bf,}}  \\\\

 \bf{✧\:\:Here, }\:   \sf\frac{CD}{DE} \:  ➠   \:  \bf \tan60  {}^{  \small\circ} . \\

  : \implies  \sf\frac{y}{DE}  \: ➠ \:  \sqrt{3}  \\\\\   : \implies  \sf DE \: ➠ \: \frac{y}{ \sqrt{3} }  \:  \cdots \cdot \bf(2) \\ \\

Then, BE DE \cdots\cdot \bf(3)

( We know that, E is mid point of BD )

Then, we get from (1), (2) and (3),

 :   \sf \implies \:  \sqrt{3x}  \: ➠ \:  \frac{y}{ \sqrt{3} }  \\\\\  :   \sf \implies\frac{x}{y}  \: ➠ \:  \frac{1}{3  }\\\\\      \qquad \quad \underline{ \boxed{\bf  : \implies \: 1 : 3}} \:  \: ✰ \\

.°. Hence, the ratio of x and y is 1:3.

 \\  \\

★ ════════════════════★

 \\  \\

Hope it helps u :))

Attachments:
Answered by OtakuSama
46

Question:-

The tops of two towers of height x and y, standing on level ground, subtend angles of 30° and 60° respectively at the center of the line joining their feet, then find the ratio of x and y.

Required Answer:-

Given:-

  \\  \sf{ \rightarrow{Height \: of \: the \: towrs \: x \: and \: y}}

\sf{ \rightarrow{The \: tops \: subtend \: angles \: 30 \degree \: and \:  60 \degree}} \\  \\

To Find:-

\\  \sf{ \rightarrow{Ratio \: of \: x \: and \: y}} \\  \\

♡Solution:-

Let,

AB = x and BC = y

Now, let's assume that E is the center of BD joining the feet of two towers.

We Know that:-

  \\  \sf{ \bold{ \tan(θ)  =  \frac{Perpendicular}{Base} }}

 \\  \sf{In} \: \bold{ \triangle{ABE}}

  • AB is the Perpendicular
  • BE is the base

\\   \sf{\therefore{\frac{AB}{BE}  =  \tan(30 \degree) }}

\\  \sf{ \implies{ \frac{x}{BE}  =  \frac{1}{ \sqrt{3} } }}

 \\  \sf{ \implies{ \blue{ BE =  \sqrt{3} x}}} -  -  -  -  -  -  -  -  - (1)

Again,

 \\  \sf{in} \: \bold{ \triangle{CDE}}

  • CD is the perpendicular
  • DE is the base

\\  \sf{ \therefore{ \frac{CD}{DE}  =  \tan(60 \degree) }}

\\  \sf{ \implies{ \frac{y}{DE}  =  \sqrt{3} }}

\\  \sf{ \implies{ \blue{DE =   \frac{y}{ \sqrt{3} }  }} }-  -  -  -  -  -  -  - (2)

Now,

As, E is the center of BD, we can write:-

 \\  \sf{ \blue{BE = DE}} -  -  -  -  -  -  -  - (3)

From, equation (1) , (2) and (3) we find,

 \\  \sf{ \bold{ \sqrt{3} x =  \frac{y}{  \sqrt{3} } }}

\\  \sf{ \implies{ \frac{ \sqrt{3}x }{ \sqrt{3} }  =  \frac{y}{ (\sqrt{3}  )( \sqrt{3}) }  \:  \:   \:  \: \boxed{ \rm{dividing \: by \:  \sqrt{3} }}}}

 \\  \sf{ \implies{x =  \frac{y}{ 3 } }}

 \\  \sf{ \implies{ \frac{x}{y}  =  \frac{1}{3} }}

 \\  \sf{ \therefore{ \bold{x \ratio y }=  \red{1 :3}}} \\  \\

 \\  \underline{\bold{ \boxed{ \rm{Hence \: ratio \: of \: x \: and \: y =  \red{ \bold{1 :3}}}}}} \\  \\

________________________

Note :- Diagram refers to the attachment!

Attachments:
Similar questions