Math, asked by pankuwiz1993, 8 months ago

The toral ages of A,B and C at present is 90 years. Ten years ago the ratio of this ages 1:2:3. The present age of B?​

Answers

Answered by sethrollins13
22

Given :

  • Sum of ages of A , B and C is 90 years.
  • Ten years ago the ratio of their ages were in the ratio 1:2:3.

To Find :

  • Present Age of B.

Solution :

\longmapsto\tt{Let\:Present\:Age\:of\:A=1x+10}

\longmapsto\tt{Let\:Present\:Age\:of\:B=2x+10}

\longmapsto\tt{Let\:Present\:Age\:of\:C=3x+10}

A.T.Q :

\longmapsto\tt{1x+10+2x+10+3x+10=90}

\longmapsto\tt{6x+30=90}

\longmapsto\tt{6x=90-30}

\longmapsto\tt{6x=60}

\longmapsto\tt{x=\cancel\dfrac{60}{6}}

\longmapsto\tt\bf{x=10}

Value of x is 10 ...

Therefore :

\longmapsto\tt{Present\:Age\:of\:B=2(10)+10}

\longmapsto\tt{20+10}

\longmapsto\tt\bf{30\:yrs.}

Answered by Anonymous
16

Given :-

  • Sum of Ages of A, B, C = 90 years.

  • Ten year ago the ratio of their ages = 1:2:3.

To Find :-

  • Present age of B.

Solution :-

\implies\sf{Let, \: the \: present \: age \: of \: a =  \: }{\textsf{\textbf{1x + 10}}} \\  \\ \implies\sf{Let, \: the \: present \: age \: of \: b =  \: }{\textsf{\textbf{2x + 10}}} \\  \\ \implies\sf{Let, \: the \: present \: age \: of \: c =  \: }{\textsf{\textbf{3x + 10}}} \\  \\ \implies\sf{1x + 10 + 2x + 10 + 3x + 10 =  \: }{\textsf{\textbf{90}}} \\  \\ \implies\sf{6x + 30 =  \: }{\textsf{\textbf{90}}} \\  \\ \implies\sf{6x =  \: }{\textsf{\textbf{90 - 30 = 60}}} \\  \\ \implies\sf{x =  \: }{\textsf{\textbf{60/6}}} \\  \\ \implies\sf{x =  \: }{\textsf{\textbf{10}}}

Value of x = 10.

\therefore\sf{The \: present \: age \: of \: b = \: }{\textsf{\textbf{2(10) + 10}}} \\  \\ \implies\sf{20 + 10 =  \: }{\underline{\boxed{\textsf{\textbf{\red{30 year}}}}}}

Similar questions