Math, asked by harshitasingh10, 1 month ago

The total and curved surface area of a solid cylinder is 180 cm2 and 108 T cm 2, respectively. If a hole of radius 3 cm made along the axis of the cylinder, what quantity of material is removed (in cm ³)?​

Answers

Answered by amishagoswami273
2

Step-by-step explanation:

Volume of a Cylinder of Radius "R" and height "h" =πR

2

h

Hence, volume of the given cylinder =π×R

2

×14=54πcm

3

R

2

=3.86

R=1.96 cm

Curved Surface Area of a Cylinder of Radius "R" and height "h" =2πRh

Hence, CSA of the given cylinder =2×π×1.96×14=54.88πsqcm

Answered by sarahssynergy
1

given a cylinder with CSA=180cm^2 and TSA=108cm^2 and a hole of 3cm radius made along axis. Find the volume of removed material

Explanation:

  1. let the radius of the solid cylinder be r and height of the cylinder be h then we have , CSA=2\pi rh = 108cm^{2}                                                                             TSA=CSA+ 2(area\ of\ base\ circle)\\TSA = 2\pi rh + 2\pi r^{2}                                                                    
  2. as given CSA=108cm^2 and TSA=180cm^2 we get,                                                  180=108+2\pi r^2\\r=\sqrt{\frac{180-108}{2\pi } } \\r=\frac{6} {\sqrt{\pi } }          
  3. putting this value of r in formula of CSA we get ,                                                   2\pi rh=108\\2\pi \frac{6}{\sqrt{\pi } } h=108\\h=5\ cm(approx.)        
  4. for the quantity of material removed we need to find the volume of cut out cylinder. the radius of removed cylinder r_1=3\ cm   and   h_1=5\ cm         then we have , V_{cylinder}= \pi r_1^{2}h_1\\V_{cylinder}= \pi (9)(5)\\V_{cylinder}= 141.4\ cm^3(approx.)\\  
  5. Quantity of material removed is approximately  141.4\ cm^3 .                                                                    

Similar questions