Math, asked by Julyin9012, 27 days ago

The total cost function of a firm is given as : C = 3 + 2q + 5q2. Find AC and MC and hence show that slope of AC = 1 q (MC – AC).

Answers

Answered by mathdude500
3

Basic Concept Used :-

\rm :\longmapsto\:\boxed{ \tt{ \: AC =  \frac{C}{q} \: }}

\rm :\longmapsto\:\boxed{ \tt{ \: MC  \: =   \: \dfrac{d}{dq} \: C \: }}

\rm :\longmapsto\:\boxed{ \tt{ \: Slope \: of \: AC  \: =   \: \dfrac{d}{dq} \: AC \: }}

\large\underline{\sf{Solution-}}

Cost function of a firm is given by

\rm :\longmapsto\:C = 3 + 2q +  {5q}^{2}

So, we know,

\rm :\longmapsto\:\boxed{ \tt{ \: MC = \dfrac{d}{dq}C \: }}

So,

\rm :\longmapsto\:MC

\rm \:  =  \:\dfrac{d}{dq}(3 + 2q +  {5q}^{2})

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}k \:  =  \: 0 \: }}

and

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n}  \:  =  \:  {nx}^{n - 1} \: }}

So, using these, we get

\rm \:  =  \:0 + 2 + 10q

\bf\implies \:MC = 10q + 2 -  -  - (1)

Now, We know that,

\rm :\longmapsto\:\boxed{ \tt{ \: AC =  \frac{C}{q}  \: }}

So,

\rm :\longmapsto\:AC

\rm \:  =  \:\dfrac{3 + 2q +  {5q}^{2} }{q}

\rm \:  =  \:\dfrac{3}{q}  + 2 + 5q

\bf\implies \:AC =  \:\dfrac{3}{q}  + 2 + 5q -  -  - (2)

Now,

Slope of AC is

\rm \:  =  \:\dfrac{d}{dq}AC

\rm \:  =  \:\dfrac{d}{dq}\bigg[\dfrac{3}{q} + 2 + 5q \bigg]

\rm \:  =  \: -  \: \dfrac{3}{ {q}^{2} }  + 0 + 5

\rm \:  =  \: -  \: \dfrac{3}{ {q}^{2} }  + 5

Hence,

\bf\implies \:\dfrac{d}{dq}AC  =  \: -  \: \dfrac{3}{ {q}^{2} }  + 5 -  -  - (3)

Now, Consider

\rm :\longmapsto\:\dfrac{1}{q} \bigg[MC - AC\bigg]

\rm \:  =  \:\dfrac{1}{q} \bigg[10q + 2 - \dfrac{3}{q}  - 2 - 5q\bigg]

\rm \:  =  \:\dfrac{1}{q} \bigg[5q  - \dfrac{3}{q} \bigg]

\rm \:  =  \:5 - \dfrac{3}{ {q}^{2} }

\bf\implies \:\dfrac{1}{q} \bigg[MC - AC\bigg] = 3 - \dfrac{5}{ {q}^{2} }  -  -  - (4)

So, Equation (3) and (4), we concluded that

\bf\implies \:\dfrac{d}{dq}AC = \dfrac{1}{q} \bigg[MC - AC\bigg]

More to know :-

1. Revenue

\rm :\longmapsto\:\boxed{ \tt{ \: R \:  =  \: pq \: }}

2. Marginal Revenue

\rm :\longmapsto\:\boxed{ \tt{ \: MR = \dfrac{d}{dq}R \: }}

3. Average Revenue

\rm :\longmapsto\:\boxed{ \tt{ \: AR =  \frac{R}{q} \: }}

4. Break Even Point

\rm :\longmapsto\:\boxed{ \tt{ \: R \:  =  \: C \: }}

5. Profit

\rm :\longmapsto\:\boxed{ \tt{ \: P \:  =  \: R \:  -  \: C \: }}

Similar questions