Math, asked by awesomeatul0007, 11 months ago

the total number of prime factors in (25)^10x (24)^20 x (26)^25 is?​

Answers

Answered by atiknaexam
2

Answer:

150

Step-by-step explanation:

(25)^10∗(24)^20∗(26)^25

(5*5)^10∗(2*12)^20∗(2*13)^25

Note: (x∗y)^k=x^k∗y^k

(5^10)*(5^10)*(2^20)*(12^20)*(2^25)*(13^25)

(5^10)*(5^10)*(2^20)*((2*3*2)^20)*(2^25)*(13^25)

(5^10)*(5^10)*(2^20)*((2^20)*(3^20)*(2^20)*(2^25)*(13^25)

add all the powers

10+10+20+20+20+20+25+25

150

Answered by hukam0685
0

The total number of prime factors

 \bf{(25)}^{10}  \times ( {24)}^{20}  \times  {(26)}^{25}  \\ are 150.

Given:

  •  {(25)}^{10}  \times ( {24)}^{20}  \times  {(26)}^{25}  \\

To find:

  • Find the total number of prime factors.

Solution:

Step 1:

Write the prime factors of 25, 24 and 26.

We know that

25 = 5 \times 5 \\

24 = 2  \times 2 \times 2\times 3  \\

26 = 2 \times 13 \\

Step 2:

Simplify the expression in terms of prime factors.

{(25)}^{10}  \times ( {24)}^{20}  \times  {(26)}^{25}  =  \\  {(5 \times 5)}^{10}  \times ( {2 \times 2 \times 2 \times 3)}^{20}  \times  {(13 \times 2)}^{25}  \\

 \implies{( {5}^{2} )}^{10}  \times ( { {2}^{3}  \times 3)}^{20}  \times  {(13 \times 2)}^{25}  \\

we know that

\bf ( { {a}^{n} })^{m}  =  {a}^{nm}  \\

\bf {a}^{n}  \times  {a}^{m}  =  {a}^{n + m}  \\

 \implies{{5}}^{20}  \times  { {2}^{60}  \times 3}^{20}  \times  {13^{25}  \times 2}^{25}  \\

Add the powers of a similar prime number.

\implies \bf {{5}}^{20}  \times  { {2}^{85}  \times 3}^{20}  \times  13^{25}  \\

To find the total number of prime factors, add all the powers.

 = 20 + 85 + 20 + 25 \\

 \bf =  150 \\

Thus,

Total number of prime factors are 150.

Learn more:

1) Write 1764 as a product of its prime factors

https://brainly.in/question/7651450

2) square root of 17424 by prime factorisation with method

https://brainly.in/question/10283290

#SPJ2

Similar questions