Math, asked by CHSURYASASIDHAR6061, 8 months ago

The total surface area of a cone is 704 sq.m and radius of it's base is 7cm find the slant height of the cone

Answers

Answered by BrainlyConqueror0901
50

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Slant\:height=3199.93\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies T.S.A\: of \: cone = 704 \:  {m}^{2}  \\  \\ \tt:\implies Radius \: of \: cone = 7 \: cm \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Slant \: height =?

• According to given question :

 \tt \circ \: Radius  =  \frac{7}{100} = 0.07 \: m  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies T.S.A \: of \:cone = \pi r(l + r) \\  \\  \tt:  \implies 704 =  \frac{22}{7}  \times 0.07(l + 0.07) \\  \\ \tt:  \implies  \frac{704 \times 7}{22 \times 0.07}  = l + 0.07 \\  \\ \tt:  \implies 32 \times 100 = l + 0.07 \\  \\ \tt:  \implies 3200 - 0.07 = l \\  \\  \green{\tt:  \implies l = 3199.93 \: m } \\  \\   \green{\tt  \therefore Slant \: height \:is \: 3199.93 \: m}

Answered by NITESH761
1

Step-by-step explanation:

\large{\underline{\underline{\sf Given:-}}}

  •  \sf TSA_{cone}=704 \: m^2
  •  \sf Radius_{base}=7 \:cm =0.07\: m

\large{\underline{\underline{\sf To \: find:-}}}

  •  \sf Slant \: height_{cone}=?

\large{\underline{\underline{\sf Solution:-}}}

\sf \bf We  \: know \:  that,

\underline{\boxed{\sf TSA_{cone} = πr(r+l)}}

\sf  πr(r+l) = 704

\sf  \dfrac{22}{7}×0.07(0.07+l)=704

\sf  22×0.01(0.07+l)=704

\sf  0.07+l=\dfrac{704}{22×0.01}

\sf  0.07+l=3200

\sf  l=3200-0.07

\sf  l=3199.93 \: m

Similar questions