Math, asked by mohammadhussain6164, 3 months ago

The total surface area of a cubical wooden block is 864 cm square Find its lateral surface area and volume ​

Answers

Answered by Aryan0123
14

Given:

  • Total Surface area of cube = 864 cm²

To find:

⟶ Lateral Surface area of cube = ?

⟶ Volume of cube = ?

Method:

Formulas used:

  1. TSA of cube = 6s²
  2. LSA of cube = 4s²
  3. Volume of cube = s³

where s is the side of cube

Let's solve it

TSA of cube = 6s²

864 = 6s²

s² = 864 ÷ 6

s² = 144

s = 144

s = ± 12 cm

Side of cube cannot be negative.

Side = 12 cm

LSA of cube = 4s²

LSA = 4 × 12 × 12

→ LSA = 576 cm²

LSA of cube = 576 cm²

Volume of cube = s³

→ Volume = 12 × 12 × 12

→ Volume = 1728 cm²

Volume of cube = 1728 cm²

Answered by Anonymous
7

Correct Question-:

  • The total surface area of a cubical wooden block is 864 cm square . Find its lateral surface area and volume.

AnswEr-:

  • The Volume of cube = 1728 cm³
  • The Lateral Surface Area of Cube -: 576 cm²

EXPLANATION-:

Given -:

  • The Total Surface Area of a cubical wooden block is 864 cm square .

To Find -:

  • The Lateral Surface Area of Cubical box .
  • The Volume of cubical box .

Solution -:

  • \underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area\:of\:of\:Cube\:  \: = \: 6× Side² }}}}}

Here -:

  • The Total Surface Area of Cube = 864cm²
  • The Side of Cube = ??

Now ,

  • \implies{\sf{\large{864 cm² = 6 × Side ²}}}
  • \implies{\sf{\large{864 ÷ 6 =  Side²}}}
  • \implies{\sf{\large{144 =  Side ²}}}
  • \implies{\sf{\large{\sqrt{144} =  Side }}}
  • \implies{\sf{\large{12 cm =  Side }}}

Therefore,

  • The side of a cube = 12 cm

Now -:

The Lateral Surface Area of Cube -:

  • \underline{\boxed{\star{\sf{\blue{ Lateral\:Surface\:Area\:of\:of\:Cube\:  \: = \: 4× Side² }}}}}

Here,

  • The Side of Cube = 12 cm

Now ,

  • \implies{\sf{\large{ 4 × 12 ²}}}
  • \implies{\sf{\large{ 4 × 144}}}
  • \implies{\sf{\large{ 576cm²}}}

Therefore,

  • The Lateral Surface Area of Cube -: 576 cm²

☆ The Volume of Cube -:

  • \underline{\boxed{\star{\sf{\blue{ Volume \:of\:of\:Cube\:  \: = \:  Side³ }}}}}

Here,

  • The Side of Cube = 12 cm

Now ,

  • \implies{\sf{\large{  12 ³}}}
  • \implies{\sf{\large{  12 × 12 × 12}}}
  • \implies{\sf{\large{  1728cm³}}}

Therefore,

  • The Volume of cube = 1728 cm³

  • ☆ Figure Related to the question-:
  • \setlength{\unitlength}{4mm}\begin{picture}(10,6)\thicklines\put(0,1){\line(0,1){10}}\put(0,1){\line(1,0){10}}\put(10,1){\line(0,1){10}}\put(0,11){\line(1,0){10}}\put(0,11){\line(1,1){5}}\put(10,11){\line(1,1){5}}\put(10,1){\line(1,1){5}}\put(0,1){\line(1,1){5}}\put(5,6){\line(1,0){10}}\put(5,6){\line(0,1){10}}\put(5,16){\line(1,0){10}}\put(15,6){\line(0,1){10}}\put(4.6,-0.5){\bf\large 12\:cm}\put(13.5,3){\bf\large 12\: cm}\put(-4,5.8){\bf\large 12\:cm}\end{picture}

_______^_^______________

Hence ,

  • The Volume of cube = 1728 cm³
  • The Lateral Surface Area of Cube -: 576 cm²

_______________________________________

Similar questions