The total surface area of a cuboid is 3328m². If the length, breadth and height are in ratio 4:3:2, then what will be it's volume?
Answers
Answered by
10
Answer:
TSA=3328 m^2
Dimensions=4:3:2
Let the dimensions be= L=4x. B=3x. H=2x
x=
3328= 2(lb+bh+lh)
3328=2(4x*3x+3x*2x+4x*2x)
3328=2(12x^2+6x^2+8x^2)
3328=2(26x^2)
3328=52x^2
3328/52=x^2
64=x^2
x=√64
x=8
Length=4*8=32
Breadth=3*8=24
Height=2*8=16
Volume=L*B*H
=32*24*16
=12288 m^3
Step-by-step explanation:
Answered by
2
Let the length of the cuboid be l m, the width of the cuboid be w m and the height of the cuboid be h m.
l:w:h=4:3:2
Let l be 4k, w be 3k, h be 2k.
The surface area of the cuboid =3328=2(4k)(3k)+2(4k)(2k)+2(3k)(2k)=24k^2+16k^2+12k^2=52k^2
52k^2=3328
k^2=64
k=8
The volume of the cuboid=(4k)(3k)(2k)=(32)(24)(16)=12288 m^3
That’s your final answer.
Similar questions