Math, asked by riYansh74, 1 year ago

The total surface area of a cuboid is 3328m². If the length, breadth and height are in ratio 4:3:2, then what will be it's volume?

Answers

Answered by merielalex
10

Answer:

TSA=3328 m^2

Dimensions=4:3:2

Let the dimensions be= L=4x. B=3x. H=2x

x=

3328= 2(lb+bh+lh)

3328=2(4x*3x+3x*2x+4x*2x)

3328=2(12x^2+6x^2+8x^2)

3328=2(26x^2)

3328=52x^2

3328/52=x^2

64=x^2

x=√64

x=8

Length=4*8=32

Breadth=3*8=24

Height=2*8=16

Volume=L*B*H

=32*24*16

=12288 m^3

Step-by-step explanation:

Answered by QueenOfKnowledge
2

Let the length of the cuboid be l m, the width of the cuboid be w m and the height of the cuboid be h m.

l:w:h=4:3:2

Let l be 4k, w be 3k, h be 2k.

The surface area of the cuboid =3328=2(4k)(3k)+2(4k)(2k)+2(3k)(2k)=24k^2+16k^2+12k^2=52k^2

52k^2=3328

k^2=64

k=8

The volume of the cuboid=(4k)(3k)(2k)=(32)(24)(16)=12288 m^3

That’s your final answer.

Similar questions